Category Archives: Uncategorized

Single lateral incision for a triple arthrodesis

by Alan Kidon, DPM, AACFAS1; Elizabeth Sanders DPM, AACFAS, FACFAOM2*; Mark Mendeszoon DPM, FACFAS, FACFAOM3

The Foot and Ankle Online Journal 11 (2): 4

The triple arthrodesis surgical approach typically involves two incisions placed laterally and medially to obtain access to the subtalar joint (STJ), talonavicular joint (TN), and the calcaneocuboid joint (CC).  Despite the wide use of the two-incision approach, the traditional approach for triple arthrodesis has been described with a single lateral incision from the tip of the fibula across the sinus tarsi to the talonavicular joint, documented historically by Ollier.  The operative technique is described, 14 patients met the inclusion criteria, with a mean age of 50 (range 16-68). The most common diagnosis was posterior tibial tendon dysfunction (PTTD) (71%). Two (14.2%) required revisional operations: one developed a metal allergy and required hardware removal with soft tissue debridement and skin grafting all after achieving bony healing (7.1%), one developed a rearfoot varus requiring a dwyer calcaneal osteotomy (7.1%).  The union rate of each joint was 100% in the STJ, 100% in the TN joint, and 92.9% in the CC joint at 6 months post-operatively. The retrospective mean VAS pain score pre-operatively was 83, while the post-operative score was 42. The mean preoperative Talonavicular angle, Meary’s angle and Calcaneal pitch angle were 4.2; 4.8 and 15.2 respectively. The Immediate post-operative angles of each angle were 2.5; 1.2 and 22.5 respectively. At six months follow up, these angles were 2.6; 1.2 and 18 respectively.  

Keywords: triple arthrodesis, single lateral incision, exposure, union

ISSN 1941-6806
doi: 10.3827/faoj.2018.1102.0004

1 – Attending Surgeon, Ankle & Foot Care Centers, Boardman, OH
2 – Foot and Ankle Surgical Fellow, University Hospitals Richmond Medical Center, Precision Orthopaedic Specialties, Inc, Chardon, OH
3 – Attending Surgeon and Fellowship Director, Precision Orthopaedic Specialties, Inc, Chardon, OH
* – Corresponding author: elizabeth.sanders014@gmail.com


The triple arthrodesis is a widely accepted surgical method for treating complex rearfoot deformity and arthritis. The surgical approach typically involves two incisions placed laterally and medially in order to grant access to the subtalar joint (STJ), talonavicular joint (TN) and the calcaneocuboid joint (CC) [1]. Despite the wide use of the two-incision approach, the traditional approach for triple arthrodesis has been described with a single lateral incision from the tip of the fibula across the sinus tarsi to the talonavicular joint, documented historically by Ollier [2]. The triple arthrodesis is indicated in conditions such as post-traumatic arthritis, tarsal coalition, congenital deformities, neuromuscular deformities and end stage arthritis [3]. As the accepted gold standard for treating these problems, the procedure has since been modified and adapted in more recent years [4]. While adhering to the principles of fixation, modified approaches have been adapted which still allow for proper exposure and preparation of the joints. Appropriate alignment of the joints is paramount if a good result is to be achieved. The single incision approach has been described in literature from a single incision medial approach for triple arthrodesis and double arthrodesis with some success [5]. We hypothesized that correction would be able to be achieved and maintained through one lateral incision approach for triple arthrodesis. The aim of the retrospective study was to evaluate the complications and results of triple arthrodesis performed using a single lateral incision and to measure radiographic changes over a period of six months.

Methods  

Medical records were reviewed of all patients that underwent a triple arthrodesis with a single lateral incision, performed by one surgeon from January 2008 until February 2016.  Patients were excluded from the study if they had less than six months of follow up, if medical documentation was incomplete, and if external fixation was used during the initial surgery.  Data obtained retrospectively from chart review included patients’ age, gender, preoperative diagnosis, total surgical time, complications, and adjunctive surgeries that were performed. Pre- and postoperative radiographic measurements of talonavicular angle, Meary’s angle and calcaneal pitch angle were collected and calculated.  All surgeries were performed by one physician (MM). A preoperative and postoperative score for pain was obtained by VAS scale (Visual Analog Scale for Pain) via phone survey. Analysis was then conducted to calculate operative time.

Operative Technique

The patient is positioned on the operative table in the supine position with a pre-fashioned bump placed under the operative hip as deemed necessary.  A thigh tourniquet is placed. The single incision is then utilized from the distal portion of the fibula over the sinus tarsi to the base of the 4th metatarsal on the operative foot (Figure 1).   

Figure 1 Incision placement for the single lateral incision triple arthrodesis extending from just below the lateral malleolus extending across the sinus tarsi to the base of the 4th metatarsal.

Figure 2 Dissection and exposure for the single lateral incision for triple arthrodesis.

The sinus tarsi can be located by inserting a needle into the sinus tarsi prior to drawing out the incision.  At the distal most portion of the surgical approach, the extensor digitorum brevis is identified and split longitudinally to gain exposure to the calcaneocuboid joint.  Next, the interosseous ligament within the sinus tarsi is resected and any subcutaneous tissue is removed. Careful dissection is continued to level of the talonavicular joint, where a combination of elevators and positioning of the foot allows for release of capsular tissues (Figure 2).  Using curettes, round burr, and curved osteotomes; articular cartilage is carefully resection from the CC and ST joints.

Figure 3 Exposure of the talonavicular joint and subtalar joints visualized with a pin distractor through a single lateral incision.

Figure 4 Distraction and preparation of the calcaneocuboid joint with a pin distractor.

A cervical spine distractor is utilized to aid in preparation of these joints (Figures 3 and 4).  This process is then repeated to expose and prepare the TN joint, while carefully maintaining anatomical alignment of the joint.  The joints are then further prepared using a 2.0 mm drill bit to fenestrate each joint. Temporary fixation is utilized and permanent fixation is achieved with one or two 7.0 mm cannulated screws to fuse the STJ followed by two 5.5 mm screws to fuse the TN joint (Figure 5).  The CC joint is evaluated and fused using one or two staples.

Figure 5 Percutaneous fixation of the talonavicular joint.

Figure 6 Post-operative scars of two brothers, both with posterior facet tarsal coalitions, now status-post triple arthrodeses performed with the single lateral incision.

Closure is performed in layers.  A Jackson-Pratt drain is placed. The Silfverskiold test is performed after arthrodesis to evaluate the need for tendo-Achilles lengthening or gastrocnemius recession.  These procedures are performed concomitantly as deemed necessary by the surgeon.

Figure 7 Pre-operative and Post-operative films status-post triple arthrodesis through a single lateral incision.

The patient is placed into a posterior splint and Jones compression dressing for the first week after surgery.  At the first follow up visit at one week, the patient is placed into a below knee cast for three additional weeks.  At the fourth postoperative week, the cast is removed and the patient is placed into a removable walking boot. Over the course of week 5 and week 6, gradual weight bearing is increased until the patient is fully weight bearing in the boot by the end of the sixth week (Figures 6 and 7).    

Results

14 patients met the inclusion criteria, 5 males (35.7%) and 9 females (64.3%) with a mean age of 50 (range 16-68).  The average BMI of the group was 34.1(range 19.6-48.7). The most common diagnosis of the patients operated on in this study was posterior tibial tendon dysfunction (PTTD) (71%).  The mean operating time of the single incision triple arthrodesis was 90 minutes (range 60-135 minutes). Of the 14 patients included in this study, two (14.2%) required revisional operations.  One patient developed an unforeseen metal allergy and required hardware removal with soft tissue debridement and skin grafting all after achieving bony healing (7.1%). The other patient developed a postoperative rearfoot varus deformity and returned to the operating room for a dwyer calcaneal osteotomy (7.1%).  One patient (7.1%) developed a non-union of the CC joint which was asymptomatic. The union rate of each joint was 100% in the STJ, 100% in the TN joint, and 92.9% in the CC joint at 6 months post-operatively. The retrospective mean VAS pain score pre-operatively was 83, while the post-operative score was 42. The mean preoperative Talonavicular angle, Meary’s angle and Calcaneal pitch angle were 4.2; 4.8 and 15.2 respectively.  The Immediate post-operative angles of each angle were 2.5; 1.2 and 22.5 respectively. At six months follow up, these angles were 2.6; 1.2 and 18 respectively. After analysis using the unpaired t-test, the P-values were demonstrated in table 4. Values of less than 5% (p < 0.05) were considered statistically significant. All surgical corrections as measured with the three angles listed were found to be statistically significant in the immediate post-operative period.  At 6-months follow up, the only measurement that was found to not be statistically significant was the calcaneal pitch angle correction.

Analysis and Discussion

Triple arthrodesis incision planning has been described very seldom in literature.  In the study by Moore in 2014, a comparison was made between two groups of patients in which triple arthrodesis was attempted via one incision vs two [6]. The study showed that while there may not have been statistically significant differences between the two groups in regard to union rates; a similar result could be achieved in a more efficient amount of operating time.  They also proved that the TN joint could be accessed and prepared properly through a lateral incision.

In a study by Bono and Jacobs  evaluating triple arthrodesis performed through one lateral incision, the union rate of each joint was 80% in the STJ, 90% in the CC joint and merely 38% in the TN joint [7]. The authors of this study concluded that a triple arthrodesis could not be effectively achieved through one lateral incision.  

Despite the dependable and reproducible nature of arthrodesis, the disruption of soft tissue and ligamentous stability of the bones has been shown to cause complications.  These complications include wound dehiscence, delayed union, nonunion, re-operation and operating time. These complications as well as the benefits of decreased operating times were well described by Weinraub in their study in 2010 [4].  The study also took into consideration the addition of the fiscal benefits of decreasing cost by decreasing operating time. Similar complications were also found in our study as demonstrated by our complication rate. The comparisons of our study, while the focus is on radiographic measurements and patient satisfaction scores, help to build on these previous studies by producing repeatable and measurable results through the single incision.   

While joint preparation and visualization can prove to be more arduous from a lateral incision, this approach has been demonstrated in the past to be successful.  Limiting the amount of surgical incisions that need to heal can help to improve time of recovery in patients that may have poor soft tissue envelope. Despite the lack of some assessment on clinical outcomes, the radiographic data that was obtained by this study demonstrated that surgical correction can be made and maintained by using one lateral incision for triple arthrodesis.

The limitations of the case study were its retrospective and non-randomized nature.  There was also no control group for comparison. While the data collected centered around radiographic measurements and patient VAS scores as a representation of the outcome, there was a lack of clinical assessment of a valid outcome in the study.  The study was also limited by the lack of a long term follow up group for measurement and comparison of data. Potential considerations for future research include a comparison group of single incision vs. double incision patients of similar demographics.  

Patient Age Sex Diagnosis BMI Smoker PMH Complication
1 39 M PTTD 31.6 N HLD None
2 49 F PTTD 47 0.5 ppd CA Metal allergy

I&D, HWR

3 54 F Post-traumatic 35.4 N HLD, Asthma, Hypothyroid None
4 55 M PTTD 29.5 N None None
5 52 F PTTD 28.7 1 ppd Hypothyroid None
6 55 M Post-traumatic 21.8 N Depression None
7 23 M Spastic / Neurologic 19.6 N CVA None
8 68 F PTTD 41.5 N CA Non-union CC joint
9 68 F PTTD (Right) 37.6 N HTN, HLD None
10 68 F PTTD (Left) 37.6 N None None
11 16 M Midfoot Arthritis 24.3 N None None
12 53 F PTTD 42.1 N None None
13 43 F PTTD 48.7 N HTN, HLD HWR, dwyer osteotomy
14 56 F PTTD 32.4 N None None

Table 1 Patient Demographics  (N=14 operations in 13 patients). Abbreviations: BMI: Body mass index; PMH: Past medical history; PTTD: posterior tibial tendon dysfunction; ppd: Packs per day; HLD: hyperlipidemia; CA: Cancer; CVA: Cerebrovascular accident, I and D: Incision and Drainage; HWR: Hardware removal.

Average

Age

Gender Diagnosis BMI Smoker PMHx Complications
50 (16-68) 5 Males

(35.7%)

10 PTTD

71.4%)

34.1

(19.6-48.7)

2/14 (14%) as summarized above 3/14 (21.4%)
9 Females

(64.3%)

3 arthritis

(21.4%)

1 neurologic

(7.1%)

Table 2 Demographic summary.

Patient Pre-operative Immediate Post-operative Follow-Up
A B C A B C A B C
1 7 8 11 0 1 18 0 2 14
2 5 2 18 8 0 28 2 0 23
3 2 10 24 5 1 28 3 0 20
4 7 3 10 2 0 26 2 0 22
5 4 5 12 2 1 25 3 1 22
6 2 7 5 0 2 10 2 4 8
7 3 5 36 2 4 30 4 3 30
8 5 1 26 2 0 34 4 0 28
9 5 7 6 4 5 12 4 4 10
10 6 8 0 2 2 16 2 2 14
11 4 4 0 2 1 16 3 1 10
12 6 2 20 2 0 22 4 1 18
13 2 4 22 2 0 20 2 0 18
14 2 1 24 2 0 30 2 0 28

Table 3 Summary of Radiographic Measurements (Degrees). A: Talonavicular angle, B: Meary’s Angle, C: Calcaneal Pitch Angle.

Measurement  Immediate Post-op Six Months Post-op
TN Angle 0.02 0.0092
Meary’s Angle 0.0004 0.0004
Calcaneal Pitch Angle 0.0475 0.2978

Table 4 Summary of P-values Post Operatively.

References

  1. Myerson MS.  Triple Arthrodesis.  Reconstructive Foot and Ankle Surgery, Ed 2.  Edited by MS Myerson, Elsevier Saunders, Philadelphia, 2011.  
  2. McGlamry D, Ruch J, Mahan K, Napoli D.  Triple Arthrodesis. Podiatry Institute Update.  1987. Ch 30.
  3. Geocker RM, Ruch JA.  Triple arthrodesis. In McGlamry’s Comprehensive Textbook of Foot and Ankle Surgery, Ed 3.  Edited by AS Banks, MS Downey, DE Martin, SJ Miller, Lippincott Williams and Wilkins, Philadelphia, 2001.
  4. Weinraub GM, Schuberth JM, Leem, Rush S, Ford L, Neufield J, Yu J.  Isolated medial incisional approach to subtalar and talonavicular arthrodesis.  J Foot and Ankle Surg 2010; Vol. 49: 236-330.
  5. Jeng C, MD, Tankson C., Myerson, MD. The Single Medial Approach to Triple Arthrodesis: A Cadaveric Study.  Foot & Ankle Int 2006. Vol 27 (12).
  6. Blake E. Moore, MD, Nathaniel C. Wingert, MD, Kaan S. Irgit, MD,  Christian J. Gaffney, MD, and Gerard J. Cush, MD. Single-Incision Lateral Approach for Triple Arthrodesis.  Foot & Ankle Int 2014. Vol. 35: 896 –902.
  7. Bono JV, Jacobs RL. Triple arthrodesis through a single lateral approach: a cadaveric experiment. Foot Ankle. 1992. Vol. 13: 408-412.
  8. Berlet G, Hyer C, Scott R, Galli M.  Medial Double arthrodesis with lateral column sparing arthrodiastasis: A radiographic and medical record review.  J Foot and Ankle Surg 2015. Vol. 54: 441-444.
  9. Sammarco VJ, Magur EG, Sammarco GJ, Bagwe MR.  Arthrodesis of the subtalar and talonavicular joints for correction of symptomatic hindfoot malalignment.  Foot and Ankle Int. 2006. Vol. 27: 661-666.

Operating on patients with complex regional pain syndrome

by Ryon Wiska DPM1*, Lawrence Fallat DPM FACFAS2

The Foot and Ankle Online Journal 11 (2): 3

Complex regional pain syndrome (CRPS) is a debilitating disorder characterized by widespread, chronic pain. While elective procedures should be held until acute CRPS flare ups have subsided, certain scenarios require immediate surgical care. Surgical management of patients with CRPS requires a team approach with several other specialties including pain management and anesthesiology.  In this article, we outline a pre-operative and post-operative management course for lower extremity surgery of patients with diagnosed CRPS. We also present several case reports where this protocol was utilized.

Keywords: Causalgia, Complex Regional Pain Syndrome, CRPS, Pain, Reflex Sympathetic Dystrophy, RSD, Surgical Management

ISSN 1941-6806
doi: 10.3827/faoj.2018.1102.0003

1 – Second year podiatric surgery resident at Beaumont Hospital, Wayne.
2 – Program director for podiatric surgery at Beaumont Hospital, Wayne.
* – Corresponding author: rwiska@gmail.com


Physicians have been documenting disorders of chronic pain for centuries, with earliest documentation spanning back to Ambroise Pare’s description of chronic pain with King Charles IX in the 17th century [1]. Mitchell and colleagues documented cases of chronic pain in soldiers secondary to gunshot wounds and injuries of peripheral nerves during the Civil War [2]. Complex regional pain syndrome (CRPS) has historically been known by multiple names including reflex sympathetic dystrophy, causalgia, Sudeck’s atrophy, and shoulder-hand syndrome. Most experts now abide by terminology introduced by the International Association for Study of Pain (IASP) in 1994, which subdivided CRPS into type 1 and type 2, with type 2 having an inciting nerve injury [3].

The diagnosis of CRPS is based on clinical findings. The original IASP diagnostic criteria for CRPS includes: 1) The presence of an initiating noxious event or a cause of immobilization. 2) Continuing pain, allodynia, or hyperalgesia with which the pain is disproportionate to any inciting event. 3) Evidence at some time of edema, changes in skin blood flow, or abnormal sudomotor activity in the region of pain. 4) This diagnosis is excluded by the existence of conditions that would otherwise account for the degree of pain and dysfunction [4]. More recent literature from the Reflex Sympathetic Dystrophy Association unveiled a clinical diagnostic criteria update, which reflects systemic findings that can be documented during patient visits (Table 1)[5]. Current management for active CRPS includes physical therapy, antidepressant agents, gabapentin, corticosteroids, topical analgesics, opioids, sympathetic blocks, somatic blocks, and neuromodulation [6-10].

  1. Continuing pain, which is disproportionate to any inciting event
  2. Must report at least one symptom in three of the four following categories Sensory: Reports of hyperalgesia and/or allodynia
    1. Vasomotor: Reports of temperature asymmetry and/or skin color changes and/or skin color asymmetry
    2. Sudomotor/Edema: Reports of edema and/or sweating changes and/or sweating asymmetry
    3. Motor/Trophic: Reports of decreased range of motion and/or motor dysfunction (weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)
  3. Must display at least one sign* at time of evaluation in two or more of the following categories
    1. Sensory: Evidence of hyperalgesia (to pinprick) and/or allodynia (to light touch and/or deep somatic pressure and/or joint movement)
    2. Vasomotor: Evidence of temperature asymmetry and/or skin color changes and/or asymmetry
    3. Sudomotor/Edema: Evidence of edema and/or sweating changes and/or sweating asymmetry Motor/Trophic: Evidence of decreased range of motion and/or motor dysfunction (weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)
  4. There is no other diagnosis that better explains the signs and symptoms

* A sign is counted only if it is observed at time of diagnosis

Table 1 Clinical diagnostic criteria for complex regional pain syndrome.

In recent pain management literature, low dose naltrexone (LDN) has been shown to be efficacious in treating patients with CRPS [11].  LDN refers to doses approximately 50-fold lower than doses of naltrexone typically given to patients addicted to opioids [12]. It has been shown that LDN antagonizes the Toll-like receptor 4 (TLR 4) pathway and attenuate microglia. TLR 4 in both CNS neurons and microglia augments the production of pro-inflammatory cytokines via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB) pathway, which acts as a mediator for neuropathic pain [13]. In a double blind study of 30 women with chronic pain, twice daily administrations of 4.5 mg of Naltrexone resulted in 57% of the participants exhibiting a significant reduction in pain when compared to placebo [14].

The current paradigm of surgeons has been to avoid operating on patients with CRPS because symptoms could either recur or worsen. In 6-10% of patients, surgical intervention is warranted and should not be delayed. These conditions include painful deformity, displacement of fixation, fracture, trauma, tumors, and soft tissue masses [15].  Surgical management of patients with CRPS has been documented in orthopedic literature, with several papers discussing surgical intervention of the upper extremity and the knee [16,17]. Previous recommendations in the knee included waiting 5 months, with ranges from 2 months to 1 year. Prolonging surgery allows for subsidence of acute pain, as well as allowing time for treatment such as sympathetic blocks and physical therapy [16,17]. The purpose of this article is to outline a surgical management approach preoperatively and postoperatively for patients with active CRPS to provide the podiatric surgeon with management options, as well as review three cases in which this protocol was used.

Preoperative Management

Surgical management of patients with CRPS requires a team approach. It is imperative to coordinate with the physician who is actively managing the patient’s CRPS. If a patient does not have an active pain management specialist, consultation with a pain management specialist should be sought prior to operating. The surgeon should coordinate with the pain management physician as well as anesthesiologist regarding patient’s operative management course with clear understanding of preoperative and postoperative treatment.

Recent literature has found that low dose naltrexone (LDN) has been shown to be efficacious in treating patients with CRPS through its endorphin releasing and anti-inflammatory properties. However, it should be held at least 24-36 hours before surgery to ensure that opiate medication administered from anesthesia is able to reach full efficacy.

Anesthesia choice is critical in ensuring that CRPS flare-ups or increase in symptoms of active CRPS do not occur. Either epidural or spinal anesthesia should be utilized in patients with CRPS. This practice has been documented in orthopedic literature with studies showing recurrence rates of CRPS falling from 72% to 10% with the use of a preoperative spinal or epidural block [16]. It is believed that this may provide a clinical advantage by blocking the potential barrage of nociceptive afferent signals in the central nervous system during surgery [18].

When trying to evaluate whether epidural or spinal anesthesia should be performed, several variables should be considered such as time from start of induction to achievement of anesthesia, time for resolution of anesthesia, and possible side effects. In spinal anesthesia, the average time from intrathecal injection of local anesthetic to achievement of surgical anesthesia is 13 minutes in conventional spinal and 16 minutes in unilateral spinal [19]. In epidural anesthesia with insertion of catheter, the average time to achieve induction was noted to be 40 minutes [20]. When performing spinal anesthesia with 5 mg hypobaric bupivacaine, Ben-David reported two segment regression after 53 minutes and discharge after 180-190 minutes, with newer studies stating average PACU time following completion of procedure ranging between 65-98 minutes [21, 22]. Mulroy noted average PACU time for patients who received epidural prior to knee surgery as 92 ±18 minutes [23].

Epidural allows for the titration of short term local anesthetic which may lead to quicker discharge times following outpatient procedure, while still providing blockade to prevent CRPS flare-ups. In patients with CRPS, epidural catheter allows the option for continuous titration of anesthetic, which may be beneficial following the procedure, whereas spinal anesthesia employs a single dosage of anesthetic.

Common side effects noted in both spinal and epidural anesthesia are hypotension, bradycardia, post-dural puncture headaches, nausea, and vomiting.  In more severe side effects, prolonged neurological complications have been observed. In epidural anesthesia, urinary retention is also a common side effect, which may require catheterization and hospitalization.

Postoperative Management

Following the surgical procedure, patients are admitted for 24-48 hours of IV pain medication administration. Patients are given take-home oral analgesic medication for pain relief until acute surgical pain has subsided. Typical examples of oral medications include Percocet 10 mg/325 mg, 1-2 tablets by mouth every 4-6 hours, or Hydromorphone 2-4 mg, 1 tablet by mouth every 4-6 hours. If patients were previously taking LDN, they are to resume daily LDN when surgical pain is controlled and after 7 days have elapsed. We recommend early range of motion and aggressive physical therapy following procedure once the surgical site is stable. If symptoms of CRPS appear to be exacerbated following surgery, we recommend patients undergo intravenous Ketamine infusion therapy, under the management of their pain specialist.

Case Report No. 1

A 38-year-old male presented to our clinic one month after injuring his right foot when a 1000-pound roll of vinyl fell onto his foot. The patient was initially referred to our clinic for care of a nondisplaced fracture of the fifth metatarsal; however, radiographs and bone scan failed to reveal signs of fracture and a diagnosis of contusion to the right foot was made. The patient had been immobilized in a nonweightbearing below knee cast for one month and had subsequently developed increased pain out of proportion to injury as well as exhibited mottling of skin to dorsum of right foot in relation to left. The patient also began to exhibit rigid contractures of the right tibialis anterior, extensor digitorum longus, and extensor hallucis longus.  The patient was referred to a pain management specialist where the diagnosis of CRPS to the right lower extremity was made. The patient reported that since date of injury, the pain had progressively increased and at time of initial presentation, was so severe that even light touch to the right lower extremity was excruciatingly painful. On evaluation it was determined that the patient exhibited two distinct types of pain, a generalized CRPS pain to the affected lower extremity as well as a muscular pain secondary to rigid contractures. The patient was treated in our office monthly for peripheral nerve blocks at the level of the ankle joint consisting of 0.5% Marcaine plain, which the patient reported provided several hours of relief of contractures and pain before pain and contractures returned.  At the same time, he underwent 22 sympathetic blockades over the course of 3 years from 4 different pain clinics, but had no relief, despite multiple pain management treatment modality attempts including a spinal cord stimulator. The patient was treated noninvasively by pain management specialists as well as our clinic for approximately 3 years, at which time it was determined that pain level had plateaued and was not improving with the treatment.

The patient underwent three different manipulations of the right foot under epidural anesthesia. The extensor tendons were stretched for a period of 20 minutes, until relaxation of rigidly contracted muscles were noted. The patient was then placed in an anterior splint following the procedures. No acute flare up of CRPS was seen immediately after the procedure; however, the patient exhibited return of rigid contractures and pain 48 hours following each procedure and was unable to tolerate the anterior splint. No increase in CRPS pain was seen following procedures.

The patient then underwent a series of botox injections that provided some pain relief and reduction of contracture to right foot and ankle that lasted for approximately two to three weeks before the muscles returned to rigid clonus.

Surgical intervention to the right foot was discussed with the patient. The patient was offered procedures that included manipulation of the right foot under anesthesia, capsulotomy of the right first metatarsophalangeal joint, lengthening of the tibialis anterior, extensor hallucis longus, and extensor digitorum longus tendons, and sectioning of extensor hallucis brevis, all of the right foot. The patient was advised that procedure may exacerbate symptoms of CRPS and that no guarantees were given or implied. The patient met with his pain management specialist prior to the procedure and was given provisions for oral analgesics following the procedure.

On the day of the procedure, anesthesia was obtained with spinal anesthesia. The patient was placed on the operating table in the supine position. Manipulation of the foot was first performed where attention was made to manually plantarflex the right ankle joint as well as toes 1-5, which were noted to be rigidly contracted in a dorsiflexed position. Following manipulation, the foot was noted to held in a plantarflexed position. Standard z-lengthening procedures were then performed to the extensor digitorum longus, extensor hallucis longus, and tibialis anterior tendons. The extensor hallucis brevis tendon was identified and then sectioned proximal to its insertion.  Attention was then directed to the first metatarsophalangeal joint where a dorsal and lateral capsulotomy was then performed and contracture of the first metatarsophalangeal joint was noted to be decreased. Closure was completed using a combination of dissolving and nondissolving suture. A postoperative block was then infiltrated around the incision sites consisting of 9 mL of 0.5% Marcaine plain and 2 mL of dexamethasone.

Following the procedure, the patient was admitted for 48-hour pain management. The patient reported a relief in pain following the procedure and was able to tolerate weight bearing to the right lower extremity without the use of an assistive device for the first time since the injury. Ultimately, the patient reported return of CRPS pain and contractures 2 weeks following the procedure; however, no increase in CRPS pain was noted. In addition, the patient noted that contractures to the right lower extremity were not as rigid or painful.

Case Report No. 2

A 31-year-old female with history of CRPS type 1 after sustaining multiple injuries from a motor vehicle accident presented to our clinic with complaints of right ankle pain. The patient had history of multiple surgeries to her right ankle with internal fixation after suffering a comminuted open right ankle fracture. The patient’s pain was actively cared for by a pain management specialist who had maintained the patients pain in a tolerable level with the use of LDN as well as IV Ketamine infusion therapy. The patient presented to our office with complaints of a painful right ankle, which had subsequently developed a severe valgus alignment of the right heel, subtalar joint arthritis, a nonunion of a right fibular fracture, as well as pain along course of retained hardware. Despite active pain management therapy, the patient admitted to 10/10 pain to the right ankle.  The patient related that pain to her right ankle was becoming debilitating to the point that she was unable to ambulate. Initial attempts were made to treat the patient conservatively with the use of padding, bracing, and offloading with patient reporting no relief of pain. When conservative treatment options were exhausted, the patient was advised of surgical correction. The patient was made aware that surgical correction risked the possibility of a CRPS flare-up. She was fully aware of this and wished to proceed with procedure. Prior to boarding procedure, multiple conversations were had with patient’s pain management specialist as well as anesthesia team at our institution with preoperative, perioperative, and postoperative management discussed at length. It was determined that prior to procedure, patient was to hold LDN. The day of the procedure, patient was to obtain a popliteal block prior to induction and then undergo general anesthesia. The patient was then to be admitted for extended stay pain monitoring.

Twenty-four hours prior to procedure, patient’s LDN was held. On the day of the procedure, the patient was to undergo a popliteal block prior to induction; however, she did not receive the block prior to procedure. The patient was brought to the operating room and placed on the hospital table in the supine position where general anesthesia was obtained. The patient then underwent removal of painful retained bone screws and plates of the ankle, open reduction and internal fixation of right fibular nonunion, resection of synostosis of right ankle, excision of scar tissue of right ankle, medial transpositional calcaneal osteotomy with internal fixation of right foot, as well as arthrotomy of right ankle.  The patient was then placed in a well-padded cast and was instructed to be non-weight bearing to the right lower extremity with the use of crutches.

Following the procedure, the patient awoke from anesthesia in intense pain to the surgical limb. An epidural was placed and pain was controlled. The patient was converted to 48 hour full admit due to epidural. After 24 hours, she related that epidural was starting to wear off and was admitting to increased pain to surgical limb. The patient was maintained on IV Dilaudid and oral Percocet, 10 mg. After 4 days postoperatively, her pain was maintained on oral Percocet and patient was discharged home.  The patient went on to achieve surgical union of fibular fracture, but continued to admit to CRPS pain to the surgical limb, which limited activities of daily living. The patient related to no increase in CRPS pain. Six months following her procedure, the patient successfully underwent a spinal cord stimulator trial. Following insertion of the stimulator, the patient was able to stand and walk around a department store, which she had been unable to do following the initial accident. Although the patient still relates to CRPS pain, the pain related to her foot and ankle condition has subsided and no increase in CRPS pain has been noted.

Case Report No. 3

A 65-year-old female presented to our office with history of CRPS, which she developed following a third intermetatarsal space neurectomy to the left foot. On clinical exam, the patient exhibited symptoms of a neuroma to the second intermetatarsal space to the left foot as well as a stump neuroma to the third intermetatarsal space of the left foot and admitted to 10/10 left pain with maximal tenderness to the forefoot. The patient admitted that pain to the left foot was so intense that her ability to ambulate was becoming limited. Conservative treatment was attempted with offloading, padding, and local steroid injections to the affected intermetatarsal spaces, which provided little to no relief. Once conservative options had failed, surgical intervention was discussed with the patient.  The patient was advised that the proposed procedures would be an excision of neuroma to second and third intermetatarsal space of the left foot. The patient was made aware that CRPS symptoms could be exacerbated by the procedure and that clear pain management goals were outlined with her pain management physician.

On the day of the surgery, anesthesia was obtained with spinal anesthesia as well as a local anesthetic block to the second and third intermetatarsal spaces of the left foot. Anatomic dissection was carried down to the level of the neuroma and nerve was tracked proximally until healthy nerve tissue was observed. Inflamed nerve was then resected from the second and third intermetatarsal space. A 4 cm x 2 cm x 0.5 cm nerve specimen was excised from the second intermetatarsal space and a 2 cm x 1.5 cm x 0.3 cm nerve specimen was excised from the third interspace.  Closure was then performed with a combination of dissolving and non-dissolving suture and a postoperative block was infiltrated to the incision site consisting of 9 mL of 0.5% Marcaine plain and 4 mL of dexamethasone. The patient was given Norco 7.5 mg/325 mg for pain control postoperatively and was partial weight bearing to the left heel in a surgical shoe. The patient declined postoperative observation for pain management and was discharged home once cleared by anesthesia.

Following the procedure, the patient reported no increased exacerbation of CRPS and admitted to decreased pain to the neuroma site on the left foot. While the patient still reports CRPS pain to the left lower extremity, she is now able to pursue activities of daily living and maintains a tolerable level of pain to the left lower extremity.

In conclusion, our outlined pre-operative and post-operative management course for lower extremity surgery of patients with diagnosed CRPS has proven effective in preventing flare-ups of CRPS and preventing increase of active CRPS pain.

Funding Declarations

No funding was used.

Conflict of Interest

None

References

  1. Pare A. Of the cure of wounds of the nervous parts. In The Collected Works of Ambroise Pare, book 10, pp 400-402, translated by T Johnson, Milford House, Pound Ridge, NY, 1634.
  2. Mitchell SW; Morehouse GR,  Kenn WW. Gunshot Wounds and Other Injuries of Nerves, pp 148-157, JB Lippincott, Philadelphia, 1864.
  3. Stanton-Hicks M, Baron R, Boss R, et al. Complex regional pain syndrome: guidelines for therapy. Clin J Pain. 1998; 14:155-166.
  4. Merskey H, Bogduk N. Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms, 2nd edition. Seattle, WA: IASP Press; 1994.
  5. Harden, R. N., Oaklander, A. L., Burton, A. W., Perez, R. S. G. M., Richardson, K., Swan, M., Barthel, J., Costa, B., Graciosa, J. R. and Bruehl, S. (2013), Complex Regional Pain Syndrome: Practical Diagnostic and Treatment Guidelines, 4th Edition. Pain Med, 14: 180–229. doi:10.1111/pme.12033
  6. Rho RH, Brewer RP, Lamar TJ, Wilson PR. Complex regional pain syndrome. Mayo Found Med Educ Res 77: 174-180, 2002.
  7. Oerlemans HM, Oostendorp RA, de Boo T, van der Laan L, Severens JL, Goris JA. Adjuvant physical therapy versus occupational therapy in patients with reflex sympathetic dystrophy/complex regional pain syndrome type I. Arch Phys Med Rehabil. 2000; 81:49-56.
  8. Kingery WS. A critical review of neuropathic pain: antidepressants and opioids. Clin J Pain. 2000; 16 (2, suppl):S49-S55.
  9. Kemler MA, Barends GAM, van Kleef M, et al. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med. 2000; 343:618-624.
  10. Van Hilten BJ, van de Beek W-JT, Hoff JI, Voormolen JHC, Delhaas EM. Intrathecal baclofen for the treatment of dystonia in patients with reflex sympathetic dystrophy. N Engl J Med. 2000; 343: 625-630.
  11. Chopra P, Cooper M. Treatment of complex regional pain syndrome using low dose naltrexone. J neuroimmune pharmacol. 2013; 8:470-476.
  12. Rea F, Bell JR, Young MR, Mattick RP. A randomized controlled trial of low dose naltrexone for the treatment of opioid dependence. Drug Alcohol Depend. 2004; 75:79-88.
  13. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009; 10:23-26.
  14. Younger J, Noor N, McCue R, Mackey S (2013) Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. Arthritis Rheum, 2013; 65(2):529–538
  15. Moesker A: Complex regional pain syndrome, formerly called Reflex sympathetic dystrophy, treated with Ketanserin and Carnitine (thesis). Rotterdam, Erasmus University Rotterdam, 2000, pp 1-147.
  16. Reuben S, Rosenthal E, Steinberg R. Surgery of the affected upper extremity of patients with a history of complex regional pain syndrome: a retrospective study of 100 patients. J of Hand Surgery. 2000; 6:147-151.
  17. Katz MM, Hungerford DS:  Reflex Sympathetic Dystrophy Affecting the knee.  J Bone Joint Surg. 1987; 69: 797 – 803.
  18. R. Norman Harden, MD, Stephen Bruehl, PhD, Michael Stanton-Hicks, MB, BS, DMSc, FRCA, ABPM, Peter R. Wilson, MB, BS; Proposed New Diagnostic Criteria for Complex Regional Pain Syndrome. Pain Med 2007; 8 (4): 326-331.
  19. Fanelli, G, Borghi, B, Casati A, et al. Unilateral bupivacaine spinal anesthesia for outpatient knee arthroscopy. Can J Anesth 2000; 47 (8):746-751.
  20. Koenig T, Neumann C, Ocker T, Kramer S, et al. Estimating the time needed for induction of anesthesia and its importance in balancing anaesthetists’ and surgeons’ waiting times around the start of surgery. Anaesthesia 2011; 66:556-562.
  21. Ben-David B, Levin H, Solomon E, Admoni H, Vaida S. Spinal bupivacaine in ambulatory surgery: the effect of saline dilution. Anesth Analg 1996; 83: 716–20.
  22. Valanne J, Korhonen AM, Jokela R, Ravaska P. Selective spinal anesthesia: A comparison of hyperbaric bupivacaine 4 mg versus 6 mg for outpatient knee arthroscopy. Anesth Analg 2001; 93: 1377-9.
  23. Mulroy M, Larkin K, Hodgson P, et al. A comparison of spinal, epidural, and general anesthesia for outpatient knee arthroscopy. Anesth Analg 2000; 91:860-4.

The vacuum phenomenon in the ankle joint: Air bubbles on CT

by Christopher R. Hood JR. DPM1*, Wesley A. Jackson DPM2, Robert C. Floros DPM3, David A. Bernstein, DPM4

The Foot and Ankle Online Journal 11 (2): 2

Gas or air bubbles in a joint space are most commonly associated with the “vacuum phenomenon,” a collection of gas that has precipitated out of solution to take up a gaseous state within a joint. This phenomenon was unbeknown to us upon a patient presentation, seen on computed tomography scan, and so further academic investigation was performed to define this pathology. Because of this lack of awareness, a PubMed® literature review was performed to analyze the rate of incidence in foot and ankle. Additionally, we present a case example of the vacuum phenomenon in the ankle joint of a 50-year old patient presenting with degenerative ankle joint pain symptoms. Further, a review of the condition as well as differentials is discussed in an attempt to raise awareness of this differential diagnosis for gas bubbles within a joint.

Keywords: Air bubbles, ankle, arthritis, CT, computed tomography, foot, gas bubbles, gaseous degeneration, vacuum phenomenon

ISSN 1941-6806
doi: 10.3827/faoj.2018.1102.0002

1 – Fellowship-Trained Foot and Ankle Surgeon, Premier Orthopaedics and Sports Medicine, Malvern PA.
2 – Resident, PGY-2, Bryn Mawr Hospital PMSR/RRA, Bryn Mawr PA.
3 – Private practice, Ocean County Foot & Ankle Surgical Associates, P.C., Toms River NJ and The Foot and Ankle Center, Haverford PA.
4 – Residency Director, Bryn Mawr Hospital PMSR/RRA, Bryn Mawr PA and Private Practice, Wayne PA.
* – Corresponding author: crhoodjr12@gmail.com


The presence of gas or air bubbles in a joint was first described by Fick in 1910 when he noticed gas bubbles in hand joints on radiograph (XR) evaluation while under traction [1-3]. Later this radiographic finding was coined the “vacuum phenomenon” (VP) by Magnusson in 1937 [2]. On imaging modalities such as computed tomography (CT) where it is most often visualized, it appears as a dark radiolucent pattern that can be shaped anywhere between a singular, linear bubble to confluence of bubbles within the confines of a joint space [2]. The shape is classically defined as a crescentic lucency paralleling a joint when found articular [3].

Gas bubbles were first thought to be associated with joint traction or trauma, but has since been found in situations of degenerative changes to joints [1,2]. Other associated gas bubble presenting pathologies include fracture-dislocation (e.g. traction injuries, open injuries introducing free air), ligament injury, metastasis, infection (e.g., abscess, osteomyelitis), cancer (e.g., multiple myeloma), intervertebral disc herniation/Schmorl’s nodes, abdominal or thoracic free air (e.g., digestive tract perforation, pneumothorax, air embolism), decompression sickness, and iatrogenic causes (e.g., surgical introduction of air, arthroscopy) [2,4].

Related to degenerative disease, its presence is most often cited to the sacroiliac (SI) joints (i.e., joint, facets, intervertebral discs) but also has been found in the pubic symphysis, lumbosacral space, and the joints of the temporomandibular, wrist, hand, hip, shoulder, knee, ankle (AKJ), subtalar (STJ), and calcaneocuboid (CCJ) [1-4]. Analysis of the gas in the SI location has found it to be predominantly nitrogen (> 90%) based , but oxygen and carbon dioxide among other gases are also present at much lower concentrations [2].

The purpose of this report was twofold: to determine the rate of occurrence of foot and/or ankle VP in the literature through a keyword search and present a case example of the VP to the AKJ in an end-stage degeneration clinical situation.

Methods

A PubMed® advanced keyword search was performed on May 1, 2017,  using the term combinations of “air bubble,” “bubble,” “gaseous degeneration,” “vacuum phenomenon,” with “foot” or “ankle.” The search had no restriction parameter fields applied. (Table 1) The returned abstracts were reviewed to determine their validity whether relevant to the primary search goal of obtaining articles demonstrating the VP from the ankle joint, distally. A table was then created counting the published instances of the VP in the foot and/or ankle.

Case Report

A 50-year old male patient presents to the senior author’s office after referral from a previous podiatrist due to his primary complaint of ankle pain. The patient described the pain as a progressive pain upon ambulation. The patient is very active and enjoys running and mountain climbing in particular. He states he can walk up to 8 miles until he can’t bare the pain anymore. He states his pain has been progressing in the ankle for 8 years now. Only rest has been able to alleviate his symptoms to this point in time. He has not sought any formal medical treatment prior to presentation.

Figure 1 50 year-old male, sagittal CT scan of the ankle. Note the gas formation in the joint as well as presence within the subchondral bone region. Associated talar dome arthritic changes. Images are left to right, lateral to medial.

Figure 2 50 year-old male, coronal CT scan of the ankle. Note the gas formation centered around, and within the cystic changes to the medial talar dome. Images are left to right, anterior to posterior.

Figure 3 50-year-old male, axial CT scan of the ankle. Note the gas formation is positioned with the lower-lying cartilage defect space. Images are left to right, superior to inferior slices.

Ankle Foot
  • “air bubble” / “ankle”
  • “air bubble” / “foot”
  • “bubble” / “ankle”
  • “bubble” / “foot”
  • “gaseous degeneration” / “ankle”
  • “gaseous degeneration” / “foot”
  • “vacuum phenomenon” / “ankle”
  • “vacuum phenomenon” / “foot”

Table 1 Key Word Search Parameters for Study Identification – Vacuum Phenomenon to the Foot and/or Ankle.

Ankle Foot
  • “air bubble” / “ankle” = 0
  • “air bubble” / “foot” = 1
  • None related to topic
  • “bubble” / “ankle” = 3
  • None related to topic
  • “bubble” / “foot” = 21
    • 1 discussing foot drop  developed 10 days post-op disc surgery, secondary to nerve root gas bubble (Kloc et al., 1998)(6)
    • 1 discussing STJ ROM using a bubble inclinometer
    • 1 discussing diabetic foot bullosis diabeticorum
  • “gaseous degeneration” / “ankle” = 0
  • “gaseous degeneration” / “foot” = 2
    • 1 discussing foot drop  developed 10 days post-op disc surgery, secondary to nerve root gas bubble (Kloc et al., 1998)(6)
  • “vacuum phenomenon” / “ankle” = 4
    • 1 related to dislocated joint/trauma of STJ and CCJ (Ahmad et al., 2007)(5)
    • 1 related to STJ and AKJ (Lee et al., 1994)(1)
    • 2 discussing lumbar pathology
  • “vacuum phenomenon” / “foot” = 2
    • 1 related to STJ and AKJ (Lee et al., 1994)(1)
    • 1 discussing foot drop  developed 10 days post-op disc surgery, secondary to nerve root gas bubble (Kloc et al., 1998)(6)

Table 2 Study Search Resulted Literature – Vacuum Phenomenon to the Foot and/or Ankle.

The patient’s past medical history consists of hemochromatosis. There is no known past surgical history to the foot or ankle. There is no known family history of foot or ankle pathologies at this time. Medications consist of hydrochlorothiazide and a baby aspirin daily.

The patient’s physical exam findings show limited dorsiflexion at the ankle joint and pain upon end range of motion in dorsiflexion at the ankle joint with a hard stop. His neurovascular status was grossly intact. There were no subjective complaints or objective findings of an infectious process based on the history and physical exam. He had no complaints of any other arthritic or painful joints. No other abnormalities were noted to his problem based exam.

A CT scan of the ankle exhibited degenerative joint disease to the talotibial joint along with a large anterior osteophyte of the distal tibia and talar neck at the ankle joint level. The CT scan also exhibited intra-articular gas centrally within the joint (Figures 1-3). Upon discussion with the reading radiologist it was declared that the gas was related to the VP. Further discussion with multiple facility radiologists where the study was performed revealed that the gas is due to nitrous oxide from surrounding synovial tissues, but can also be due to positioning of the ankle joint at the time of the study. From their experience, most VPs noted by these radiologists occur primarily in the lumbar spine and shoulders. None of them have seen such a finding in the ankle until this particular case.

Discussion of treatment options with the patient included less impacting exercises, an anterior ankle joint arthroplasty, and the need for a possible ankle joint replacement in the long term future. The patient was in favor of the anterior ankle arthroplasty procedure but would take time to think about his options moving forward. No treatments have been rendered to date and he has not returned to the senior authors’ facility.

Results

From the PubMed® literature search, 33 articles resulted in total. After reviewing titles, abstracts, and database tags, removing irrelevant and duplicate entries, only two articles were relevant to this literature review of identifying examples of the VP in the foot and/or ankle (Table 2). This included a retrospective institutional review of CT imaging over two years evaluating the presence of gas bubbles in the lower extremity joints (i.e., AKJ, STJ, CCJ) and a case example of the VP in the STJ and CCJ after a trauma [1,5]. A third study found discussed a drop foot secondary to epidural gas formation and nerve root compression was not counted due to the distance location of the gas bubbles from the foot [6].

Discussion

The VP is a combination of anatomy and physics, calling into play both Henry’s Law and Boyle’s Law through hydrodynamic cavitation [2,4]. Simply put, gas precipitates out of solution through a negative intra-articular pressure when a joint is distended (e.g. traction) or collapses. The newly created free space within the joint capsule needs to be filled, and is done so by gas (primarily nitrogen) [2,3]. In this situation it is often by a gaseous element that precipitates out of the local tissue or synovial fluid due to changes in pressure [1,2,4]. Gohil et al (2014) and Yanagawa et al (2016) provide detailed explanations of this phenomenon. Normally, this gas goes back into solution when the joint returns to its normal volume and pressure. However in situations of arthritis, a thickened or fibrotic/scarred joint capsule does not allow the gas to dissolve out. Furthermore, excess joint space due to the presence of cartilage loss and subchondral cysts allows the gas to remain out of solution to fill that “extra” space [1]. In situations of traction or trauma to a joint,  the blood gas nitrogen precipitates out of solution to fill the excess free intra-articular space from the joints’ distention [5]. In open fractures, the outside air fills the spaces within the extremity, and is not a true VP.

The presence of the VP may be seen as something no more than an academic finding when present on a CT scan of a lower extremity joint. It has been documented in instances related to trauma (i.e. sprain; joint dislocation; rapid joint distention,) degenerative disease, osteochondrosis, osteonecrosis, idiopathic, osteomyelitis / infection, or conditions specific to the joint found in [1,2,5]. Its finding is most often related to degenerative disease to a joint, easily seen on CT due to its greater sensitivity  with higher resolution compared to XR or magnetic resonance imaging (MRI) [1,2,4]. Associated pathology such as narrowed space, subchondral cyst, sclerosis, hypertropic degeneration to the joint may be seen along with the gas bubbles in degenerative situations across each imaging modality. In acute trauma, the presence of gas would suggest intact joint capsule and the associated intra-capsular ligaments however reports in the knee have shown otherwise [2].

When found, one important point is to correlate the finding to the presenting pathology through the patient history and physical exam so to not over or under diagnose the true pathology at hand [2,3]. This is most important when wanting to rule out any potential infectious processes such as septic joint, open fracture-dislocation, or penetrating joint trauma. Joint gas and spinal infection has been associated with bacteria such as obligate anaerobes or facultative organisms such as clostridia, Peptococcus, and E. coli [1,7]. Patterns of gas formation have been cited with different pathology from a linear formation in more benign pathology while bubble-like multi-lobulated patterns suggest infection [2]. In closed injuries, the presence may suggest a recent joint dislocation that otherwise may not be visible on imaging [5].

Specific to the lower extremity, Lee et al. (1994) performed an institutional retrospective review of CT scans over a two year period  to determine the incidence of gas within the STJ and/or AKJ [1]. It was documented in 12 cases (n = 495, 2.4%) on CT, none of which were related to infection. Of these, 11 were in situations of arthritis (post-traumatic, 10; non-traumatic, 1), 10 cases in the STJ, and although the XR did not show gas or air in the joints, degenerative changes were present and visible on both XR and CT. In the only other example, Ahmad et al. (2007) demonstrated the VP in a single case of an acute, closed STJ and CCJ fracture-dislocation [5]. One final unrelated  but interesting case included epidural gas collection secondary to vertebral disc degeneration causing nerve root compression and a drop foot [6]. Ultimately, surgical decompression resulted in resolution of the drop foot.

The VP is very under-reported in the literature and in radiology reports [2]. In the SI joint where the finding is most common, one study found only a 16% reported rate [2]. For the case presented here, the finding was not mentioned in the radiologists report. Only in calling the radiologist who performed the evaluation did we get an explanation of the gas finding seen on CT. The condition may be unfamiliar to physicians other than radiologist, as was in this instance, where more awareness would be important for the ordering physician to add the VP to their differential diagnosis of gas in a joint without jumping directly to infection [2,7].

The authors surmised the VP finding in the lower extremity may not be seen in high percentages due to two more reasons. These are based on the physics of the VP and some speculation [2]. The first is that the VP is most sensitive on CT imaging. In instances of acute trauma to the lower extremity such as traction injuries (i.e. sprains) that are often evaluated, diagnoses, and treated in the outpatient setting, an MRI is often the modality used if advanced imaging is required. In these traumatized joints, by the time imaging is performed, the gas has possibly gone back into solution and fluid fills any remaining excess intra-articular space. In acute injury settings such as joint dislocations, it has been suggests that gas bubbles may be routinely seen within 4 hours of dislocation while occasionally seen after 48 hours on CT scan [8]. Another multi-joint study found, after inducing a transient traction-VP, the gas bubbles to disappear within 10 minutes [3]. If acute fracture-dislocations present in the emergent setting and the more sensitive CT is ordered, the VP finding may often be overlooked due to the more pressing osseous trauma that requires urgent treatment or be attributed to a concomitant open injury and free air. Second relates to the duration of gas presence in a joint, other than the aforementioned points. In situations of chronic degenerative disease, over time the gas within the joint achieves a new solubility equilibrium and will dissolve back into solution and not be visible. The time to reach equilibrium was not found in any report.

Conclusion

The VP is a finding consisting of gas or air bubbles on CT within a joint space. Its finding is under represented in the lower extremity joints with only two citations to date (not including this report). The presence should not be alarming when seen in a non-infectious presentation. Although its finding to date is not correlated with a more advanced joint degeneration to the lower extremity, the finding can be another example of degeneration in addition to visible cartilage loss, subchondral cysts, and scarred joint capsules. This example adds to the literature base of VP to the lower extremity and provides another mode of bringing awareness to physicians who treat the lower extremity.

Financial Disclosures / Funding Declaration

None

Conflict of Interest

None

Acknowledgements

None

References

  1. Lee TH, Wapner KL, Mayer DP, Hecht PJ, D M. Computed tomographic demonstration of the vacuum phenomenon in the subtalar and tibiotalar joints. Foot Ankle Int. 1994;15(7):382–5.
  2. Gohil I, Vilensky JA, Weber EC. Vacuum phenomenon: clinical relevance. Clin Anat. 2014;27:455–62.
  3. Balkissoon ARA. Radiologic interpretation of vacuum phenomena. Crit Rev Diagn Imaging. 1996;37(5):435–60.
  4. Yanagawa Y, Ohsaka H, Jitsuiki K, Yoshizawa T. Vacuum phenomenon. Emerg Radiol [Internet]. Emergency Radiology; 2016;23:377–82. Available from: http://dx.doi.org/10.1007/s10140-016-1401-6
  5. Ahmad R, Annamalai S, Radford M, Cook C. Vacuum phenomenon in a dislocated joint. Emerg Med J. 2007;24:862.
  6. Kloc W, Wasilewski W, Imieliński B, Karwacki Z. Epidural gas aggregation in the course of gaseous degeneration of lumbar intervertebral disk as a cause of foot paresis. Neurol Neurochir Pol. 1998;32(3):699–704.
  7. Nagashima T, Minota S. Air bubbles in the knee joint. J Clin Rheumatol. 2016;22(2):94–5.
  8. Fairbairn KJ, Mulligan ME, Indication A, Fairbairn KJ, Murphey MD, Resnik S. Gas bubbles in the hip joint on ct: an indication of recent dislocation. Am J Roentgenol. 1995;164(May):931–4.

Progression of a digital or partial ray amputation to transmetatarsal amputation and below knee amputation: Time frames and associated comorbidities, a three-year retrospective study

by Carmen Bruno DPM1*, Susan Wiersema DPM2, Nneka Meka DPM3

The Foot and Ankle Online Journal 11 (2): 1

A history of lower extremity ulceration increases the risk for further ulceration, infection, and subsequent amputation. The best predictor of amputation is a history of previous amputation. The transmetatarsal amputation is often performed as a secondary procedure when infection has recurred after a digital or partial ray amputation.  Patients with a digital or partial ray amputation are at a higher risk for a more proximal amputation such as a transmetatarsal amputation (TMA) or a below knee amputation (BKA). The primary objective of this study is to determine the time frame between a digital or a partial ray amputation to TMA or a BKA, with a secondary objective to focus on the co-morbidities of the research patients. Our aim is to study the time frame from initial to subsequent amputations, in order to identify a “critical period” in which increased intervention may be beneficial. The study design consists of a three-year retrospective chart review of patients who initially received a digital or partial ray amputation and subsequently required a TMA or a BKA. The median time from digital or partial ray amputation to transmetatarsal amputation was 55 days. The median time from digital or partial ray amputation to below knee amputation was 21 days. A possible explanation for the median number of days to BKA being shorter than the median number of days to TMA could be that the patients with more serious comorbidities were more likely to require a BKA emergently. The interventions during the critical period include tighter glucose control and lower extremity angiograms with close follow-up to address the underlying comorbidities of these patients.  Further research is needed regarding the degree of effectiveness of these interventions and their ultimate success in limb salvage.

Keywords: transmetatarsal amputation, below knee amputation, infection, digital amputation

ISSN 1941-6806
doi: 10.3827/faoj.2018.1102.0001

1 – Chief Resident, Department of Podiatry, Ochsner Health System, New Orleans, LA
2 – Second year resident, Department of Podiatry Ochsner Health System , New Orleans, LA
3 – Staff Physician, Department of Podiatry Ochsner Health System, New Orleans, LA
* – Corresponding author: carmen.bruno@ochsner.org


Diabetic patients are generally at a higher risk for developing non-healing ulcerations of the lower extremity. It is estimated that 15% of patients with diabetes will develop lower extremity ulcerations at some point in their lifetime [1]. The overall incidence of diabetic lower extremity amputations in the United States is 195 per 100,000 per year [2]. A few of the common diabetes-related risk factors for developing ulcerations include peripheral neuropathy, vascular disease, and a history of ulceration or amputation [3].

Microvascular and macrovascular disease are complications of diabetes. Hyperglycemia can lead to microvascular complications such as diabetic neuropathy, nephropathy, and retinopathy. Macrovascular disease can lead to complications including coronary artery disease and peripheral arterial disease (PAD). Peripheral arterial disease is commonly seen in diabetics and can result in prolonged healing of ulcerations secondary to arterial insufficiency. Additionally, PAD can lead to lack of oxygenation and difficulty in delivering antibiotics to the infection site, thus impairing the ability to resolve infections [4].

A history of a lower extremity ulceration increases the risk for further ulceration, infection and subsequent amputation. The best predictor of amputation is a history of previous amputation [4, 5]. The transmetatarsal amputation is often performed as a secondary procedure when infection has recurred after a digital or partial ray amputation.  Patients with a digital or partial ray amputation are at a higher risk for a more proximal amputation such as a TMA or a BKA [6].

To our knowledge, the period between the initial amputation to a more proximal amputation such as a TMA or a BKA has not been well studied. Our aim is to study the time frame from initial to subsequent amputations, in order to identify a “critical period” in which increased intervention may be beneficial.

The primary objective of this study is to determine the time frame between a digital or a partial ray amputation to TMA or a BKA, with a secondary objective to focus on the co-morbidities of the research patients. Co-morbidities related to the microvascular and macrovascular disease including end stage renal disease (ESRD) and PAD, respectively, will be included.

Methods

The study design consists of a three-year retrospective chart review of patients who initially received a digital or partial ray amputation who subsequently required a TMA or a BKA. After approval was obtained by the Ochsner IRB, the research data miner was provided with the procedure codes and inclusion criteria. The charts were then further analyzed to see if they met the inclusion criteria. The inclusion criteria are displayed in Figure 1. Data was analyzed utilizing quantitative methods to determine the time frame from a distal amputation to transmetatarsal amputation of the same limb. Data was also analyzed to determine the time frame from a digital or partial ray amputation to a BKA or TMA of the same limb. The comorbidities of diabetes, PAD, and ESRD from the research patients were also included in the study for further analysis. Statistical analysis was completed utilizing SAS version 9.4. Tests were performed with significance level of α=0.05.

Patients undergoing transmetatarsal amputation in the past 3 years of the same limb.
Patients undergoing a below knee amputation in the past 3 years of the same limb.

Figure 1 Inclusion criteria.

Results

From 2012 to 2015, there were 96 transmetatarsal amputations and 91 below knee amputations performed at Ochsner Clinic Foundation. From the patients with a history of transmetatarsal amputation, 41% (40) had previously undergone digital or partial ray amputation. From the patients with a history of below knee amputation, 25% (23) had previously undergone digital or partial ray amputation. Of the patients with a history of transmetatarsal amputation, 87% (35) had diabetes, 70% (28) had PAD and 57% (23) had ESRD. Of the patients with a history of a BKA, 86% (20) had diabetes, 86% (20) had PAD and 56% (13) had ESRD. This information is displayed in Figure 2.

For the patients with a history of BKA, the comorbidities of ESRD, PAD and diabetes were all found to be statistically significant risk factors with p-value of 0.0001, 0.0068 and 0.0058 respectively.

Figure 2 Comorbidities of BKA and TMA patients.

For patients with a history of TMA, the comorbidity of diabetes was found to be a statistically significant risk factor with a p-value of 0.00029. The comorbidities of ESRD and PAD were not found to be statistically significant risk factors in patients with a history of TMA. The median time from digital or partial ray amputation to transmetatarsal amputation was 55 days. The median time from digital or partial ray amputation to below knee amputation was 21 days. This information is displayed in Figure 3.

Discussion

A limitation of this study is that the complete list of comorbidities for each patient was not taken into account. Some patients may have had more severe comorbidities than others, leading to a skewed time frame between digital or partial ray amputation to TMA and BKA.  Additionally, the studied cohorts were not matched in terms of age, gender, and complete list of comorbidities as previously mentioned. There was no overlap between patients included in the TMA and BKA cohorts.

A possible explanation for the median number of days to BKA being shorter than the median number of days to TMA could be that the patients with more serious comorbidities were more likely to require a BKA emergently. However, the difference in days to a more proximal amputation was not statistically significant between the separate groups, with a p-value of 0.0709.

Figure 3 Median days to BKA and TMA.

Total Patients BKA Patients TMA Patients P-value Wilcoxon Test
N=63 N=23 N=40
Days to procedure, Median (q1-q5 Range) Median: 21

(13-79)

Median: 55

(19-204)

0.0709 Z = -1.8063

Figure 4 Median and range (q1-q5) of days to BKA and TMA.

Conclusion

Patients with a digital or partial ray amputation are at a higher risk for more proximal amputations such as a transmetatarsal amputation and below knee amputation. The average time frame from a distal amputation to a more proximal amputation could provide additional information regarding the “critical period” in which intervention is key to prevention. The “critical period” for this study refers to the median time frame from a distal amputation to a TMA or a BKA, which were 55 days and 21 days respectively. 90% of patients requiring a BKA had the procedure done within 79 days, and 90% of patients requiring a TMA had the procedure done within 204 days.

A conclusion that can be drawn from the data is that patients should be carefully monitored for at least two months after an initial digital or partial ray amputation. A more conservative approach, using the 90th percentile data, is to monitor patients for a longer time frame of up to seven months to reduce the incidence of more proximal amputations.

The interventions during the critical period include tighter glucose control and lower extremity angiograms with close follow-up to address the underlying comorbidities of these patients.  Further research is needed regarding the degree of effectiveness of these interventions and their ultimate success in limb salvage.

Funding Declaration

Financial Support for this project was provided from Ochsner Health System.

Conflict of Interest

None reported.

Acknowledgements

We would like to thank the research department at Ochsner Medical Center for their assistance with this project.

References

  1. Elsharawy MA. Outcome of midfoot amputations in diabetic gangrene. Ann Vasc Surg. 2011;25(6):778-82.
  2. Suckow BD, Newhall KA, Bekelis K, et al. Hemoglobin A1c Testing and Amputation Rates in Black, Hispanic, and White Medicare Patients. Ann Vasc Surg. 2016;36:208-217.
  3. Frykberg RG, Zgonis T, Armstrong DG, et al. Diabetic foot disorders. A clinical practice guideline (2006 revision). J Foot Ankle Surg. 2006;45(5 Suppl):S1-66.
  4. Borkosky SL, Roukis TS. Incidence of re-amputation following partial first ray amputation associated with diabetes mellitus and peripheral sensory neuropathy: a systematic review. Diabet Foot Ankle. 2012;3
  5. Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clinical Diabetes 2008 Apr; 26(2): 77-82.
  6. Gambardella GV. Blume PA.  Understanding The Biomechanics of the Transmetatarsal Amputation. Podiatry Today. 2013;26(3):46-56.

Spring 2018

Issue 11 (1), 2018


Effects of a foot orthosis custom-made to reinforce the lateral longitudinal arch on three-dimensional foot kinematics
by Shintarou Kudo, Yasuhiko Hatanaka, Toshihiro Inuzuka


Conservative surgical management in an extreme diabetic foot case
by JM García-Sánchez, A Ruiz-Valls, A Sánchez-García, A Pérez-García


Choice of surgical treatment for patients with arthrosis of the ankle joint
by Kirill S. Mikhaylov, Vladimir G. Emelyanov, Alexandr Yu Kochish, Aleksandr A. Bulatov


A rare presentation of posterior compartment abscess in a diabetic patient: A case study
by Anthony Romano DPM/PGYIII, Kaitlyn L. Ward DPM/PGYIII, Byron Hutchinson, DPM FACFAS


A new technique using cruciate incisions for treating macrodactyly toe: Case report and review of the literature
by Mohammed Taifour Suliman MD FRCS


Cuboid navicular tarsal coalition: Presentation and evaluation with emphasis on magnetic resonance imaging appearance
by Angela Chang BS, Carly A. Lockard MS, Márcio B. Ferrari MD, Thomas O. Clanton MD, Charles P. Ho MD PhD


Eccrine syringofibroadenoma: A case report with dermatoscopic findings
by Mary A. Mooney MD and Myron A. Bodman DPM

Eccrine syringofibroadenoma: A case report with dermatoscopic findings

by Mary A. Mooney MD1* and Myron A. Bodman DPM1

The Foot and Ankle Online Journal 11 (1): 7

Eccrine syringofibroadenoma is a rare, benign adnexal lesion derived from cells of the acrosyringium of eccrine sweat glands.  This lesion has multiple clinical manifestations, including a reactive form, occurring in a pre-existing inflammatory or neoplastic dermatosis. Our case represents the typical presentation of the reactive form of eccrine syringofibroadenoma, including the dermoscopic appearance of the lesion.

Keywords: Eccrine syringofibroadenoma, dermoscopy, glomerular vessels, nummular eczema

ISSN 1941-6806
doi: 10.3827/faoj.2018.1101.0007

1 – College of Podiatric Medicine, Kent State University, 6000 Rockside Woods Blvd, Independence, OH 44131
* – Corresponding author: mmooney9@kent.edu


Pedal dermatological disorders are commonly limited to superficial fungal, viral and bacterial infections, pressure induced and genetic hyperkeratotic disorders, psoriasis and eczemas. Pedal neoplastic disease is much less common. There is a characteristic diagnostic delay of pedal neoplasms that can be attributed to the behavior of both patients and physicians. Patients may pay less attention to lower extremity problems, while in the primary care office the lower extremity physical examination may have a low priority. Physicians must also be aware of this complication of chronic dermatosis.

Case Report

A 62-year-old female presented with a 12-year history of intermittent nummular eczema on the right heel.  Treatment with triamcinolone 0.5% ointment had provided some relief (patient stated 20% improvement) but the lesion remained.  The patient wanted to know the diagnosis and accepted the risks and benefits of a punch biopsy.

The medical history was significant for epilepsy, treated with Dilantin. Physical examination demonstrated an erythematous hyperkeratotic plaque with fissures on the right heel measuring 1.5 cm. in diameter (Figure 1).  Dermoscopy examination with polarized light revealed enlarged irregular dermal vascular structures and opaque hyperkeratosis consistent with cutaneous neoplasia (Figure 2).

A 2-mm punch biopsy was performed and the specimen was sent for analysis.  The pathology diagnosis was reported as syringofibroadenoma. The patient was referred for a possible wide excision of the lesion.

Figure 1 Scaly plaque over lateral aspect of the right heel pad.

Figure 2 Dermoscopy image with polarized light detects glomerular dermal vessels partially obscured by opaque hyperkeratosis.

Figure 3 Thin anastomosing cords of epithelial cells surrounded by fibrovascular stroma (H&E x 10).

Discussion  

Eccrine syringofibroadenoma (ESFA) is a rare, benign  neoplasm of the acrosyringium of eccrine sweat glands, first described by Mascaro in 1963 [1].    ESFA has multiple clinical presentations. These were classified by Starink into four subtypes [2].  French added a fifth subtype, reactive [3]. The current classification system is: 1) solitary ESFA, non-hereditary, 2) multiple ESFA in hidrotic ectodermal dysplasia (Schöpf syndrome), 3) multiple ESFA without cutaneous findings (eccrine syringofibroadenomatosis), 4) nonfamilial unilateral linear ESFA (nevoid), and 5) reactive ESFA associated with inflammatory or neoplastic dermatoses [3].

This lesion typically presents in adult individuals, usually over the age of 40.  It frequently appears in the distal extremities. The reactive form is present in patients with inflammatory or neoplastic lesions, or in patients with peripheral neuropathy [4].  In these cases, eccrine syringofibroadenoma may arise in response to repetitive damage with subsequent repair of eccrine ducts [3]. The exact nature of the lesion, however, is not completely understood.  It may be hyperplastic, hamartomatous, or neoplastic[2]. Although ESFA typically has a benign course, it has been reported as a precursor to squamous cell carcinoma and pseudocarcinomatous hyperplasia [5, 6].  Malignant transformation of ESFA is rare, but has also been reported [7]. In these cases, it can be difficult to determine if the EFSA was the primary lesion, with a carcinoma developing within it, or if the EFSA developed in response to a previously existing cancer.

Clinically, ESFA presents as a slow growing, exophytic lesion with a verrucous or spongy, moist mosaic, or erythematous scaly plaque appearance [8].  The lesions may be solitary or multiple. It is frequently located on the extremities, with multiple case reports involving the foot and ankle, although other parts of the body such as the hand, wrist, finger, and lip, can be involved [2].

The dermoscopy image detected vascular structures consistent with glomerular vessels.  The structural pattern of vessels in dermoscopy play a critical role in the diagnosis of non-pigmented skin lesions [9].  Glomerular vessels are large-caliber reddish dots formed by tortuous capillaries curled up into a ball, resembling the glomerular apparatus of the kidneys and have been observed in a variety of neoplasms including Bowen’s disease, eccrine poroma, basal cell carcinoma, Merkel cell carcinoma as well as actinic keratoses and stasis dermatitis but have not been previously reported in ESFA [9].

The histologic appearance of the lesion demonstrates thin, anastomosing strands of epithelial cells, which can appear as cords, surrounded by a fibrovascular stroma. These strands are contiguous with the epidermis [8].  Eccrine syringofibroadenoma stains positive with epithelial membrane antigen and carcinoembryonic antigen[8]. In spite of the highly variable clinical presentation, the histologic appearance of ESFA is uniform for the different subtypes [3].  

Differential diagnosis may include prurigo nodularis, granulomatous dermatitis, fungal and bacterial infections, eccrine poroma, reticulated seborrheic keratosis, lichen sclerosis, and fibroepithelioma of Pinkus and amelanotic melanoma [8, 9].

Our patient represented a case of reactive eccrine syringofibroadenoma.  The patient had a 12-year history of intermittent nummular eczema on the right heel with only a partial response to topical steroids.  This type of clinical history is similar to other reported cases of reactive EFSA. Histologically, the lesion demonstrated the typical appearance of EFSA, with thin anastomosing cords of epithelial cells surrounded by fibrovascular stroma contiguous with the epidermis.  There were no signs of atypia or malignant transformation (Figure 3).

Our patient was referred for wide excision of the lesion to a plastic surgeon and to a dermatologist for a full body examination to search for additional lesions. Wide excision has been the mainstay of treatment [10], although cryotherapy [11], radiation [12], and carbon dioxide laser [13] are alternatives.  For early lesions, close observation and follow up may be an alternative to complete excision, especially if complete excision is difficult due to the size or location of the lesion [10]. The patient was lost to follow-up.

Acknowledgement

We would like to acknowledge the assistance of Ashfaq A. Marghoob MD, Director of Clinical Dermatology at Memorial Sloan Kettering Cancer Center, New York, for his help in interpreting the dermoscopy image

This case was written with the approval of the Kent State University Institutional Review Board.

References

  1. Mascaro JM. Considerations on fibro-epithelial tumors. Exocrine syringofibroadenoma. Ann Dermatol Syphiligr (Paris) 1963;90:143-53.
  2. Starink TM. Eccrine syringofibroadenoma: multiple lesions representing a new cutaneous marker of the Schöpf syndrome, and solitary nonhereditary tumors. J Am Acad Dermatol 1997;36(4):569-76.
  3. French LE. Reactive eccrine syringofibroadenoma: an emerging subtype. Dermatology 1997;195(4):309-10.
  4. Sirikham T, Rojhirunsakool S, Vachiramon V. Reactive Eccrine Syringofibroadenoma Associated with Neuropathy, Venous Stasis, and Diabetic Foot Ulcer. Case Rep Dermatol 2016;8(2):124-9.   
  5. Bjarke T, Ternesten-Bratel A, Hedblad M, Rausing A. Carcinoma and eccrine syringofibroadenoma: a report of five cases. J Cutan Pathol 2003;30(6):382-92.
  6. Kacerovska D, Nemcova J, Michal M, Kazakov DV. Eccrine syringofibroadenoma associated with well-differentiated squamous cell carcinoma. Am J Dermatopathol 2008;30(6):572-4.
  7. Katane M, Akiyama M, Ohnishi T, Watanabe S, Matsuo I. Carcinomatous transformation of eccrine syringofibroadenoma. J Cutan Pathol 2003;30(3):211-4.
  8. Lowell DL, Salvo NL, Weily WJ, Swiatek M, Sahli H. Multiple Eccrine Syringofibroadenoma of Mascaro of the Lower Extremity. J Am Podiatr Med Assoc 2016;106(6):433-8.
  9. Tiwary AK, Firdous J, Mishra DK, Chaudhary SS. A case report of reactive solitary eccrine syringofibroadenoma. Indian Dermatol Online J 2017;8(1):35-8.
  10. Cho E, Lee JD, Cho SH. A case of reactive eccrine syringofibroadenoma. Ann Dermatol 2011;23(1):70-2.
  11. Ozkaya DB, Su O, Bahalı AG, Topukçu B, Dizman D, Tosuner Z, et al. Solitary Eccrine Syringofibroadenoma and Successful Treatment with Cryotherapy. J Am Podiatr Med Assoc 2016;106(3):237-8.
  12. Morganti AG, Martone FR, Macchia G, Carbone A, Massi G, De Ninno M, et al. Eccrine syringofibroadenoma radiation treatment of an unusual presentation. Dermatol Ther 2010;23 Suppl 1:S20-3.
  13. Athanasiadis GI, Bobos M, Pfab F, Athanasiou E, Athanasiadis IE. Eccrine syringofibroadenoma treated with carbon dioxide laser. Clin Exp Dermatol 2009;34(2):261-3.

Cuboid navicular tarsal coalition: Presentation and evaluation with emphasis on magnetic resonance imaging appearance

by Angela Chang BS1, Carly A. Lockard MS1, Márcio B. Ferrari MD1, Thomas O. Clanton MD1,2, Charles P. Ho MD PhD1,*

The Foot and Ankle Online Journal 11 (1): 6

Tarsal coalition is an uncommon condition that is often overlooked in the adult population. The potential sequelae of untreated tarsal coalition include changes in gait mechanics, flattening of the longitudinal arch and degenerative changes in the hindfoot joints. Tarsal coalition should be considered as a possible diagnosis in the active younger patient who presents with frequent hindfoot pain and ankle sprains. Our report presents a case of an incidental finding of an asymptomatic cuboid-navicular tarsal coalition in a patient who presented with persistent Achilles tendinosis and reviews the available literature regarding this condition.

Keywords: cubonavicular tarsal coalition, cuboid-navicular coalition, tarsal coalition, Achilles tendinosis, MRI

ISSN 1941-6806
doi: 10.3827/faoj.2018.1101.0006

1 – Steadman Philippon Research Institute, Vail, Colorado, USA
2 – The Steadman Clinic, Vail, Colorado, USA
* – Corresponding author: charles.ho@sprivail.org


Tarsal coalition, thought to have first been described in the literature in 1877 [1], is an anatomical anomaly in which a fibrous, cartilaginous, or osseous coalition forms between two or more tarsal bones [2]. This condition occurs in less than 1% of the general population [3]. Approximately 48% of tarsal coalitions are talocalcaneal, 44% are calcaneonavicular, and the remaining 8% occur in other tarsal joints [3,4]. It has been suggested that tarsal coalition occurs during embryonic development due to failure of mesenchymal differentiation and segmentation, and may be genetic in etiology [5,6]. Tarsal coalition is found in association with pes planus, hindfoot rigidity and peroneal spastic flatfoot [7-9].

Imaging evaluation of suspected tarsal coalition should begin with anteroposterior (AP), 45-degree internal oblique, and lateral foot radiographs with the AP and lateral taken weight bearing [10].  These three views are typically sufficient for diagnosis of calcaneonavicular and talonavicular coalition. On radiographs, calcaneonavicular coalition is best visualized on a 45-degree internal oblique, and can present as an “anteater nose sign” on the lateral view [10]. Talocalcaneal coalitions may be difficult to visualize directly due to the complex orientation of the subtalar joint, but are associated with secondary signs such as talar beaking, narrowing of the posterior subtalar joint with poor visualization of the middle facets, rounding of the lateral talar process, and “C sign” created by bone bridging between the talar dome and sustentaculum tali [10].

Additional computerized tomography (CT) and magnetic resonance imaging (MRI) are recommended to visualize the size, location and extent of joint involvement more accurately [11-13]. CT should be reconstructed in both the coronal and axial planes. Non-osseous coalitions may appear as joint space narrowing and marginal reactive bone changes [10]. MRI in the coronal and sagittal planes is recommended to allow differentiation between osseous, cartilaginous, and fibrous bridges [10].

Case Report

A 23-year-old man began experiencing heel pain three years prior to presentation at our office. His past medical history was negative for diabetes mellitus, traumatic or chronic foot and ankle injuries, or rheumatologic disease. Three years prior to presentation at our clinic the patient experienced acute onset of left heel pain focused around the medial aspect of the distal Achilles following a high-elevation mountain hike. This pain improved with eccentric calf exercises and gentle stretching. However, another alpine hiking activity one year later resulted in onset of pain in the right heel, which did not improve satisfactorily with conservative treatment including gel heel inserts, calf raises and inversion-eversion exercises. The patient began to experience chronic recurrent bilateral distal Achilles pain that varied between 0 and 9 points on a 10-point scale. The patient did not experience any other midfoot or hindfoot pain. The pain was exacerbated with running and improved with rest and diclofenac 1% gel (Voltaren Topical). Four days prior to presentation at our clinic the patient underwent a right hip arthroscopy for femoroacetabular impingement, including labral repair and acetabular and femoral osteochondroplasty.

Upon physical exam, the patient was wearing a hip brace and limited to 20 pounds of flatfoot weight-bearing on the right and therefore standing alignment could not be assessed. Bilaterally there was swelling but no tenderness to palpation along the Achilles tendon at the insertion, over the lateral calcaneal ridge, or over the lateral or medial aspect of the tendon. Heel raises were not performed due to his postoperative right hip arthroscopy status. Range of motion of the right ankle with knee straight showed dorsiflexion to 0°, plantarflexion to 40°, inversion to 15°, eversion to 10°, adduction of 15°, and abduction of 10°.  Left ankle dorsiflexion with the knee bent was to 10°.  Range of motion was equal bilaterally. The patient had 5/5 manually-tested plantarflexion strength bilaterally.

Bilateral calcaneal lateral and axial radiographs were obtained.  There was no evidence of Haglund’s deformity, calcifications, or fracture. Sagittal, coronal and axial magnetic resonance images of both ankles were also obtained.

On MRI of the right ankle, mild longitudinal thickening of the Achilles tendon with increased signal and tendinosis of the distal tendon was visualized. No focal tear defect or retraction was identified. A mild retrocalcaneal bursitis was noted. The cuboid-navicular tarsal coalition was identified on the MRI.  The coalition appeared as an osseous prominence of the cuboid-navicular junction, with prominent narrowing of the cuboid-navicular bone junction, and sclerosis, irregularity, thinning, slight pitting, and appearance of interdigitation of the bone margins at the junction. These characteristics are visible both on sagittal (SAG) and coronal non-fat-suppression (COR non-FS) and fat-suppression (FS) images. (Figures 1 and 2). Surrounding bone showed poorly defined increased signal compatible with stress-related edema; this increased signal is most apparent on the FS images (Figures 1b and 2b).   Stress-related change and edema were also visualized in the surrounding soft tissue; this increased signal is most apparent on the FS images (Figures 1b and 2b). The cuboid-navicular tarsal coalition appearance, with the narrowing of the bone junction and appearance of bone margin interdigitation and thinning but lack of complete cortical and trabecular bone continuity and marrow bridge, is typical of a soft tissue fibro-cartilaginous coalition or mixed osseous/soft tissue coalition.

Figure 1 Sagittal proton density-weighted turbo spin echo non-fat-suppressed (A) and fat-suppressed (B) magnetic resonance image showing coalition (arrow). Severe narrowing of the cuboid-navicular junction is seen with opposing bone margin irregularity, sclerosis, appearance of interdigitation thinning and pitting. Bone and surrounding soft tissue increased signal and stress-related edema are more apparent and prominent on the fat-suppressed image.

Figure 2 Coronal proton density-weighted turbo spin echo non-fat-suppressed (A) and fat-suppressed (B) magnetic resonance image showing coalition (arrow). Severe narrowing of the cuboid-navicular junction is seen with opposing bone margin irregularity, sclerosis, appearance of interdigitation thinning and pitting. Bone and surrounding soft tissue increased signal and stress-related edema are more apparent and prominent on the fat-suppressed image.

On the left side there were similar signs of Achilles tendinosis and retrocalcaneal bursitis. No tarsal coalition was present on the left side. The patient was made aware of the incidental finding and the potential for the coalition to become symptomatic in the future. The patient deferred treatment of the coalition and elected to manage the Achilles tendinosis conservatively.

Discussion

Calcaneonavicular and talocalcaneal tarsal coalitions are extensively reported in the literature. However, a much smaller number of cuboid-navicular cases have been reported, with varying symptoms at presentation.  Current literature suggests that this type of coalition is often asymptomatic, with exacerbation of pain and/or peroneal spastic flatfoot only with increased activity [14]. Del Sel and Grand reported the diagnosis of bilateral cuboid-navicular coalitions in a 45-year-old patient who underwent radiographic examination due to trauma to both feet [15].  Chu et al. also reported an incidental finding of a cuboid-navicular coalition upon CT evaluation in a 35-year-old patient following a comminuted pilon fracture [16].

In addition to reports on asymptomatic coalitions, several authors have reported symptomatic coalitions, with symptoms including dorsal and midfoot pain and decreased range of motion [13,14,17,18]. Awan et al. reported a case on a 17 year old patient with chronic unremitting pain at rest that was exacerbated during sports-related activities [14]. Feliu reported a case in which the only symptom was two years of intermittent pain in the dorsum of the foot with otherwise normal findings upon physical exam, while Johnson et al. reported a case on a patient with fixed pes planus deformity presented with midfoot pain associated with a decrease in subtalar and transverse tarsal joint motion [18,3].  

The patient age at the time of diagnosis varies from 9 [17] to 45 [15] years old. We found a comparable number of studies reporting male [3,14,15,18,19] and female [4,16,17,20] patients. However, the reported time from the beginning of the symptoms to the diagnosis ranged from two weeks [19]  to several years [3,13,17]. Delayed diagnosis of cuboid-navicular coalitions is often reported in the literature due to missed coalition on radiographic exam. Routine images often show minimal changes with an absence of secondary signs that are seen with other tarsal coalitions and findings specific to cuboid-navicular coalitions [14].

A high level of suspicion must be present in order to correctly diagnose cuboid-navicular coalition, as the only radiographic finding may be an abnormal relationship between the posterior medial cuboid and plantar lateral navicular [14]. Cuboid-navicular coalition does not cause talar beaking, so the absence of the talar beak sign cannot be used to exclude the presence of this type of coalition [14]. Although some case studies reported successful diagnosis using radiographs, [18,19,21] several authors reported negative radiographic findings [3,4].

Fibrocartilaginous and bony forms of cuboid-navicular coalition exist and MRI can be useful in distinguishing between them [3,13,14,16,17]. MRI findings in the context of a bony coalition include a continuous marrow across the coalition bridge [10]. MRI may be superior to CT for the diagnosis of fibrous coalitions as the MRI allows better differentiation between bony and fibrous changes [10]. Furthermore, MRI proton density fat-suppressed (PD FS), T2-weighted fat-suppressed (T2 FS), and short T-1 inversion recovery (STIR) images allow visualization of reactive edema [10]. Different stages of coalition ossification may exist in a single patient. For example, Del Sel and Grand and Piqueres et al. reported cases of bilateral cuboid-navicular coalition, with an osseous coalition on one side and a cartilaginous coalition on the contralateral side [15,21].

The treatment for symptomatic cuboid-navicular coalition varies from conservative [14,18] to surgical treatment [3,13,17,20]. Awan et al reported successful treatment using physical therapy, although the reported follow-up was only 3 months [14]. Several authors have reported their surgical treatment outcomes, with generally good results. Johnson et al. reported failure of conservative treatment including short leg cast immobilization, ultimately progressing to surgical treatment, with the resection of the osseous bar. This was performed through a single lateral curvilinear incision from the inferior aspect of the lateral malleolus to the distal medial aspect of the navicular [3]. Piqueres et al also reported good results following surgical treatment, with 1 year follow-up, and return to previous sports participation with no recurrence of pain [21]. During surgical treatment the resected bone surfaces may be separated using bone wax [4], adipose tissue [13], or the extensor digitorum brevis muscle [17] to avoid coalition recurrence. However, Hounshell  reported that donor site morbidity and recipient instability can occur with the use of wax or muscle belly as the interposition spacer and suggested the use of an acellular human dermal regenerative tissue matrix as an acceptable alternative since it was associated with good stability and no regeneration of the bone bar [20]. To our knowledge, the largest surgically-treated case series reported is from Sarage et al., which included four patients aged 15 to 35 years with fibrous coalition who were surgically treated with coalition resection and adipose tissue interposition with good results [13].

Conclusion

The purpose of this case study is to present the radiographic and MRI findings in a patient with asymptomatic cuboid-navicular coalition in the context of symptomatic Achilles tendinosis. MRI is an important diagnostic component of the evaluation of tarsal coalition, especially in the less commonly affected tarsal bones.

Funding declaration

No funding was received for this work.

Conflict of interest declaration

All authors: Steadman Philippon Research Institute Research Support from: Smith & Nephew Endoscopy, Arthrex, Siemens Medical Solutions, USA, Ossur Americas, Vail Valley Medical Center.

Charles P. Ho: Steadman Philippon Research Institute (Research Advisory Committee), Rotation Medical (Consultant).

Thomas O. Clanton: Arthrex, Inc. (Consultant/speaker fees, and royalties and in-kind donations of surgical supplies for research), Stryker, Inc. (Consultant/speaker fees and royalties), Steadman Philippon Research Institute (Research Advisory Committee).

References

  1. Moraleda L, Gantsoudes GD, Mubarak SJ. C Sign: Talocalcaneal coalition or flatfoot deformity? J Pediatr Orthop 2014;34:814–9.
  2. Kulik SA, Jr., Clanton TO. Tarsal coalition. Foot Ankle Int 1996;17(5):286-96.
  3. Johnson TR, Mizel MS, Temple T. Cuboid-navicular tarsal coalition — presentation and treatment: A case report and review of the literature. Foot Ankle Int 2005;26(3):264-6.
  4. Kamiya T, Watanabe K, Teramoto A, Yamashita T. Cuboid-navicular tarsal coalition in an adolescent female athlete: A case report. JBJS Case Connect, 2015 Nov 11; 5 (4): e93.
  5. Leonard MA. The inheritance of tarsal coalition and its relationship to spastic flat foot. J Bone Joint Surg Br 1974;56b(3):520-6.
  6. Herzenberg JE, Goldner JL, Martinez S, Silverman PM. Computerized tomography of talocalcaneal tarsal coalition: A clinical and anatomic study. Foot Ankle 1986;6(6):273-88.
  7. Anderson RJ. The presence of an astragalo-scaphoid bone in man. J Anat Physiol 1880;14(Pt 4):452-5.
  8. Harris RI, Beath T. Etiology of peroneal spastic flat foot. J Bone Joint Surg Br 1948;30-B(4):624-34.
  9. Badgley CE. Coalition of the calcaneus and the navicular. Arch Surg 1927;15:75-88.
  10. Newman JS, Newberg AH. Congenital tarsal coalition: multimodality evaluation with emphasis on CT and MR imaging. Radiographics 2000;20(2):321-32; quiz 526-7, 32.
  11. Lawrence DA, Rolen MF, Haims AH, Zayour Z, Moukaddam HA. Tarsal coalitions: Radiographic, CT, and MR imaging findings. HSS J 2014;10(2):153-66.
  12. Lemley F, Berlet G, Hill K, Philbin T, Isaac B, Lee T. Current concepts review: Tarsal coalition. Foot Ankle Int 2006;27(12):1163-9.
  13. Sarage AL, Gambardella GV, Fullem B, Saxena A, Caminear DS. Cuboid-navicular tarsal coalition: Report of a small case series with description of a surgical approach for resection. J Foot Ankle Surg 2012;51(6):783-6.
  14. Graham JA, Awan O. The rare cuboid-navicular coalition presenting as chronic foot pain. Case Rep Radiol 2015:1-4.
  15. Del Sel JM, Grand NE. Cubo-navicular synostosis; a rare tarsal anomaly. J Bone Joint Surg Br 1959;41-b(1):149.
  16. Chu JS, Underriner T, Yegorov A. A rare case of cubonavicular coalition. Radiol Case Rep.
  17. Prado MP, Mendes AA, Olivi R, Amodio DT. Cuboid-navicular tarsal coalition. Rev Bras Ortop 2010;45(5):497-9.
  18. Feliu EC. Cubonavicular synostosis. A case report. Acta Orthop Belg 1991;57(3):306-8.
  19. Waugh W. Partial cubonavicular coalition as a cause of peroneal spastic flat foot. J Bone Joint Surg Br 1957;39-b(3):520-3.
  20. Hounshell CR. Regenerative tissue matrix as an interpositional spacer following excision of a cuboid-navicular tarsal coalition: A case study. J Foot Ankle Surg 2011;50(2):241-4.
  21. Piqueres X, de Zabala S, Torrens C, Marin M. Cubonavicular coalition: A case report and literature review. Clin Orthop Relat Res 2002(396):112-4.

A new technique using cruciate incisions for treating macrodactyly toe: Case report and review of the literature

by Mohammed Taifour Suliman MD FRCS

The Foot and Ankle Online Journal 11 (1): 5

This report is a case of macrodactyly of the second and fourth toes of a young girl using  bilateral cruciate incisions the procedure details described and similar procedures discussed highlighting the differences and advantages of our procedure. The final outcome is shown and we reviewed the literature as well.

Keywords: macrodactyly, gigantism, toes, cruciate

ISSN 1941-6806
doi: 10.3827/faoj.2018.1101.0005

1 – Department of Plastic Surgery, King Fahad Hospital; Tabuk, Kingdom Saudi Arabia.
* – Corresponding author: mtaifour1@yahoo.com


Macrodactyly or gigantism of the toes is a rare congenital anomaly [1-3]. There are two types of the condition: first is the true macrodactyly which is always congenital, and there is the pseudo macrodactyly which occurs in partial gigantism, von Recklinghausen’s disease, Ollier’s disease, Maffucci’s syndrome, Klippel-Trenaunay-Weber syndrome and congenital lymphedema [2]. Temtamy further divided true macrodactyly into two types (a) macrodactyly simplex congenita in which the digit is bigger at birth and grows in proportion (the static type) and (b) progressive lipomatous macrodystrophy in which the digit is bigger at birth, but the subsequent growth is greater and out of proportion [2]. Diagnosis is obvious and can be reached even in utero [1].

Treatment is surgical and aims at size reduction and shortening of the toe with preservation of the cosmetic appearance and comfortable shoe fitting [5,6,8].

Case report

A 22 year-old female presented to our clinic with macrodactyly of the 2nd and 4th toes of her right foot (Figure 1). She has had her right 3rd toe amputated previously in another hospital. Following all the appropriate and routine preoperative measures she was taken to the operating room and under general anesthesia and a thigh tourniquet the plan for debulking and shortening of the affected toes were carried out as shown in Figure 2. First the two circumferential incisions were planned to carefully preserve the digital neurovascular bundles. Then the skin between these incisions was excised leaving behind the vessels intact. Next, two v-shaped incisions were made on the plantar and dorsal aspects of the toe to join the circumferential wound rim proximally. This was repeated with two inverted v-shaped incisions joining the rim from the distal axis (Figure 2).

Figure 1 The right foot showing megadactyly of the second and fourth toes. The scar of the site of amputated middle toe is clear.

Then all the skin and deep tissue within the v–shaped incisions were excised to debulk the enlarged toe and through the same wound, a segment of the affected middle phalanx excised. Finally, the wound was closed in a cruciate fashion with a K-wire insertion to maintain the digit in a rectus position. At a two-year postoperative follow-up, the result was satisfactory with the toes shortened, debulked and the nails preserved [Figure 3]. With no recurrence the patient is happy having no problems wearing her shoes comfortably and painting her nails.

Figure 2 Depicting the cruciate incision on the dorsum of the enlarged toe.

Discussion

Macrodactyly is a rare congenital anomaly with no known etiology [1,2]. Affected individuals experience difficulties in fitting shoes and are embarrassed by the unsightly cosmetic appearance of the enlarged digit [4, 5].

Surgery offers the best solution to this problem and many procedures have been described, all aiming at size reduction and shortening of the affected digit with preservation of the nail in most of the recent procedure [4-10].

The technique we described here meets the three objectives mentioned above with good final functional and cosmetic results (Figure 3).

Figure 3 Final results three months postoperatively showing the foot from dorsal view (a) , and planter view (b). With good results with the nail preserved.

Fatemi et al described similar technique for the hand , but in two children where they included the distal joint to arrest bone growth[10]. We did not perform an arthrodesis as our patient is an adult and no further bone growth is expected. The main difference between our method and that of Fatemi et al is that we added two v-shaped incisions proximal to the circumferential wound and further two inverted v-shaped incisions distally (Figure 2). This facilitates debulking of the enlarged toe and at the same time allowed us for easy resection of the bone. Fatemi used only the circumferential incision which we think is suitable in their cases as there was less tissue to debulk [10].

Other methods for nail preservation were described but not without complications. The Tsuge procedure preserves the nail but some patients reported a skin bump on the dorsal aspect of the digit [6]. Free nail graft was also tried but the graft survival was compromised by the poor fatty bed, devascularized nail graft, and long term discomfort at the nail [6-8].  Transfer as described by Dautel and others produce good cosmetic results but due to the rigid nail plate, the interphalangeal joint was stiff [9]. We think our method adds a new option for the surgeon in dealing with this problem, its main advantages over other described nail preserving procedures is that the v- and inverted v-shaped incisions facilitates debulking of the affected digit and at the same time allow bone resection.

References

  1. Khanna N, Gupta S, Khanna S, Tripathi F. Macrodactyly. Hand. 1975;7(3):215-22.
  2. Minguella J, Cusi V. Macrodactyly of the hands and feet. Int Orthop. 1992;16(3):245-9.
  3. Yüksel A, Yagmur H, Kural BS. Prenatal diagnosis of isolated macrodactyly. Ultrasound Obstet Gynecol. 2009;33(3):360-2.
  4. Hop MJ, Van der biezen JJ. Ray reduction of the foot in the treatment of macrodactyly and review of the literature. J Foot Ankle Surg. 2011;50(4):434-8.
  5. Ahn JH, Choy WS, Kim HY, Lee SK, Lee SH. Treatment of macrodactyly in the adult foot: a case report. Foot Ankle Int. 2008;29(12):1253-7.
  6. Morrell NT, Fitzpatrick J, Szalay EA. The use of the Tsuge procedure for pedal macrodactyly: relevance in pediatric orthopedics. J Pediatr Orthop B. 2014;23(3):260-5.
  7. Sabapathy SR, Roberts JO, Regan PJ, Ramaswamy CN. Pedal macrodactyly treated by digital shortening and free nail graft; a report of two cases. Br J Plast Surg. 1990;43(1):116-9.
  8. Uemura T, Kazuki K, Okada M, Egi T, Takaoka K. A case of toe macrodactyly treated by application of a vascularised nail graft. Br J Plast Surg. 2005;58(7):1020-4.
  9. Dautel G, Vialaneix J, Faivre S. Island nail transfer in the treatment of macrodactyly of the great toe: a case report. J Foot Ankle Surg. 2004;43(2):113-8.
  10. Fatemi MJ, Forootan SK, Pooli AH. Segmental excision of the distal phalanx with sparing of neurovascular bundle in macrodactyly: a report of two cases. J Plast Reconstr Aesthet Surg. 2010;63(3):565-7.

A rare presentation of posterior compartment abscess in a diabetic patient: A case study

by Anthony Romano DPM/PGYIII1, Kaitlyn L. Ward DPM/PGYIII1,  Byron Hutchinson, DPM FACFAS1*

The Foot and Ankle Online Journal 11 (1): 4

This case outlines the management of a 61-year-old undiagnosed diabetic female who presented to the emergency department with signs and symptoms consistent with an acute Achilles rupture. The patient was referred to the foot and ankle clinic for routine management. Due to inconsistent clinical findings and progressive worsening of status in clinical exam, additional tests were ordered which revealed a 11.4 cm abscess in the posterior compartment of the right leg and an intact Achilles tendon. The patient underwent a staged incision and drainage with removal of all nonviable tissue resulting in a 4 cm x 1.4 cm defect. She underwent negative pressure wound VAC therapy resulting in full closure of the wound. This treatment led to resolution of the infection, limb salvage and preserved limb functionality.

Keywords: leg abscess, diabetes mellitus, Achilles tendon rupture, infection

ISSN 1941-6806
doi: 10.3827/faoj.2018.1101.0004

1 – Franciscan Foot & Ankle Institute, Federal Way, WA
* – Corresponding author: byronhutchinson@chifranciscan.org


We present a unique case in which an undiagnosed diabetic patient presented to the emergency department with symptomatology and history consistent with an acute Achilles tendon rupture. Despite having no constitutional symptoms, the patient was found to have a large abscess of the posterior compartment of the right lower leg.

This case report describes the diagnostic tests, surgical intervention and wound care techniques that eventually led to resolution of the infection and preserved limb functionality. It also draws attention to the fact that uncontrolled diabetes has the propensity to allow for large-scale infections in patients that have no open wounds or obvious sources of infection.

Diabetes mellitus (DM) presents a wide variety of systemic complications for affected patients. Of interest to this case is the diabetic individual’s reduced ability to mount an immune response, thereby masking the constitutional signs and symptoms of infection (fever, tachycardia, hypotension and tachypnea) [1]. In the previously undiagnosed patient, this abnormal presentation may delay and/or prevent proper diagnosis and treatment. The primary mechanism of immunosuppression is due to the altered structure and function of the diabetic polymorphonuclear cells, monocytes and macrophages compared to non diabetics [2,3]. The diabetic patient is also at an increased risk for infection as certain microorganisms become more virulent in a high glucose environment [4]. Microorganisms also demonstrate an increased adherence to diabetic cells as compared to non diabetic cells [5,6]. For this reason, physicians caring for diabetics need to have a high index of suspicion for possible infection even if vital signs and lab results remain within normal ranges, or if no clear source of infection is apparent [1,6].  

Case Report

A 61-year-old Caucasian female presented to the emergency department due to increasing right calf pain, tenderness, swelling and inability to bear weight. Per the emergency department physician’s notes, the patient reported stepping out of an RV when she heard a pop and felt like her Achilles tendon was “overstretched”. She was not able to plantarflex on initial exam. No other injuries were reported. She denied fever, chills, nausea or vomiting. Vital signs were as follows: Blood pressure (BP) 158/75, Pulse 114, Temperature (Temp.) 36 °C (96.8 °F), Respiration rate (RR) 16 bpm, blood oxygen saturation (SpO2) 95%.

Pertinent past medical history included obesity and hypertension. She reported prior hand ganglion cyst excision, temporomandibular joint surgery and tonsillectomy. Her family medical history was remarkable for maternal diabetes and maternal aortic valve disease. She was a former smoker (1 pack/day, quit 5 years prior) and consumed 1-2 alcoholic beverages a month.

The review of systems upon arrival in the emergency department was negative. No abnormal integumentary findings were noted, specifically rash or erythema. Physical exam was positive for calf tenderness with palpation. A positive Thompson test was also documented. Vascular status was intact. Radiographs were ordered and revealed no bony abnormality or evidence of acute fracture (Figures 1a and b). The patient was diagnosed with an acute right Achilles tendon rupture and subsequently discharged. She was given a prescription of Vicodin and Ibuprofen and instructed to follow up with podiatry within a week.

Figure 1a and b Lateral (a) and AP (b) radiographs obtained in emergency room at initial presentation revealed no bony abnormality or evidence of acute fracture.

The patient followed up as instructed two days later at the foot and ankle clinic.  She stated that she developed a blister to her right posterior heel and noticed redness to her right calf. She rated her pain as 10/10. She denied nausea, fever, vomiting, chills and diarrhea. Vital signs were as follows: BP 155/89, Pulse 89, Temp. 36.7 °C (98.1 °F), RR 16, SpO2 96%.

On physical exam, she was neurovascularly intact. Significant global non-pitting edema was noted to the right ankle. A superficial bulla was noted to right posterior heel with serous drainage. Erythema was also present involving the posterior leg and foot. The musculoskeletal exam was positive for extreme guarding to right lower extremity. There was a negative Thompson’s test, in contrast to what the emergency department provider had documented. There was suspicion for infection; however, no obvious portal of entry was evident.

The patient’s diagnosis was then modified to acute right Achilles tendon rupture with cellulitis. The cellulitis was thought to have stemmed from the bulla secondary to traumatic edema. The patient was placed in a CAM boot, instructed to perform daily dressing changes to the bulla and to return to clinic in two days for re-evaluation. A venous duplex was ordered and reported as negative for deep vein thrombosis. An MRI was also ordered at that time due to suspicion of infection.

Figure 2 Sagittal sections from MRI revealed 114 mm large posterior compartment abscess. Intact Achilles tendon demonstrated (a-c). Axial bilateral T2 MRI showing the fluid collection in the right posterior compartment (d).

The patient returned to the podiatry clinic two days later. She stated she had been compliant with non-weight bearing and dressing changes. She reported a perceived increase in posterior heel edema. Her vitals were as follows: BP 163/89, Pulse 94, Temp. 36.3 °C (97.4 °F), Resp. 15, SpO2 95%.  

Upon repeat clinical exam, the patient remained neurovascularly intact and extreme tenderness along the posterior lower leg was noted. Erythema and edema had worsened. Redness extended from her heel to the knee, both anterior and posteriorly. Expressible purulence was noted from the bulla which had increased in size and spread to her lateral heel. The posterior heel at the Achilles insertion site was enlarged and there was noticeable fluctuance, indicating an underlying abscess.

A CBC was ordered and revealed a WBC count of 17,700 with a left shift. Although the patient had no previous diagnosis of DM, her fasting glucose was 268 mg/dL with an HbA1C of 10.5%.  ESR was 105 and CRP was 23.7. Cultures were taken from the purulent bulla and revealed methicillin resistant staphylococcus aureus bacteria.

The patient was admitted to the hospital and started on IV Vancomycin. The previously ordered MRI revealed an 11.4 cm fluid collection present in the posterior compartment of the leg (Figure 2a-d). The Achilles tendon was fully intact with no signs of rupture (Figure 2c).

The patient was consented for an incision and drainage of the purulent bulla in the operating room to be performed the following day. The incision and drainage was performed with the patient in the prone position. After an appropriate sterile prep was achieved, attention was directed to the bulla at the Achilles tendon insertion on the posterior aspect of the right heel where a stab incision was made (Figure 3). The stab incision was extended proximally until purulent drainage ceased at the level of the mid-calf.

Approximately, 75 cc of purulent drainage was evacuated from the leg. Three liters of normal saline was used for irrigation of the leg. Upon completion of the procedure, major muscular and tendinous structures, namely the Achilles tendon, were noted to be viable. The infection was confined to the posterior compartment only. The macerated, non-viable skin where the original bulla had been located was excised leaving an approximately 4 cm x 1.4 cm void over the Achilles tendon insertion [Figure 4]. The wound was reapproximated using a combination of retention sutures and a vessel loop to reduce tension to the area (Figure 4). The wound was then packed and covered with a sterile dressing. Daily packing changes were performed with a repeat washout of the leg performed 72 hours later.

Figure 3 Purulent drainage from the bulla on the posterior leg upon stab incision.

Figure 4 Postoperative clinical appearance, demonstrating the extent of the incision required to ensure complete evacuation of the purulence. Vessel loop employed in a crisscross fashion in order to relieve tension. Note void with exposed Achilles tendon.

At the second wash-out, all purulence was noted to be absent and all muscular and tendinous structures remained viable. Partial primary closure was performed at the proximal aspect of the incision. The distal portion could not be closed. A vessel loop in a crisscross fashion was again employed to assist with reapproximation. Vacuum assisted closure therapy of the wound (wound VAC) was then initiated over the exposed Achilles tendon and along the incision. The patient’s WBC normalized three days postoperatively. The patient was medically managed for her undiagnosed diabetes.

Figure 5 Granulation tissue beginning to cover exposed Achilles tendon.

Figure 6 Clinical appearance 26 months postoperatively: Complete granularization and re-epithelialization over posterior wound.

Wound VAC changes were performed every other day while the patient was hospitalized. Upon discharge from the hospital, the patient received daily infusions of intravenous (IV) vancomycin for two weeks and all dressing changes were performed by enterostomal therapists. Although the infection had been eradicated, the challenge of keeping the exposed Achilles tendon viable for limb functionality remained.

Results

Over the next several weeks, the patient remained non-weightbearing and continued wound VAC therapy. At four weeks postoperatively, granulation tissue began to form over the tendon (Figure 5). The tendon appeared viable throughout the entire process; however, there was noticeable contracture during this period of non-weight bearing. The patient continued this course with regular wound VAC and dressing changes at a wound care center. At approximately four months postoperatively, complete granulation over the Achilles tendon and skin re-epithelialization was noted. No additional surgical intervention was needed.

Upon complete closure of the wound, the patient began physical therapy to regain ankle range of motion, strength and stability. After eight weeks of therapy, she was able to attain adequate ankle dorsiflexion. She remains completely healed with a functional limb 26 months post initial presentation (Figure 6).

Discussion

To our knowledge this is the first case report of deep posterior leg compartment infection in an undiagnosed diabetic patient initially misdiagnosed as an Achilles tendon rupture. On initial presentation to the emergency department and initial follow-up at the podiatry clinic, the patient’s large infection was masked due to the fact she was diabetic, albeit undiagnosed. She did not exhibit any constitutional symptoms of infection including fever, tachycardia, hypotension, or tachypnea. Additionally, there was no obvious portal of entry for the infection at the time of presentation.

In this case, there were key steps that ultimately led to limb salvage. The first was made by the emergency department physician by stressing the importance of prompt follow-up at the foot and ankle clinic for immediate management. The second key step was the foot and ankle physician performing the repeat physical exam from presentation to the emergency department. The negative repeat Thompson test led the provider to consider a broader differential diagnosis (Achilles tendon rupture with cellulitis vs deep vein thrombosis vs infection). Additional tests were then ordered to help narrow the differential even though the patient wasn’t demonstrating any constitutional signs of infection.

The two day follow up period as ordered by the foot and ankle specialist facilitated a prompt diagnosis and admission to the hospital immediately after review of the newly ordered labs and imaging. The timely diagnosis, admission, and incision and drainage ensured that the infection did not spread to other compartments or render the Achilles tendon nonviable.

Following initial management, additional steps were also taken to ensure full future functionality of the limb. The repeat incision and drainage allowed appropriate assessment of the infected structures prior to definite closure to ensure limb viability. The decision to maintain daily infusions of IV antibiotics for two weeks postoperatively prevented recurrence and non-weight bearing status allowed for appropriate granulation tissue to form over the tissue void and exposed tendon. Alternative wound care products which may have resulted in faster would closure were unavailable due to the patient’s insurance. Despite this limitation, wound VAC therapy was successful at gaining full would closure.

The final step which ensured limb viability and functionality was the referral to physical therapy in order to address the acquired equinus contracture. This referral was purposefully delayed until full would closure was achieved as early mobilization may have resulted in wound opening, and compromised healing, ultimately prolonging the course of treatment.

In conclusion, diabetic infections present unique challenges; however, when the proper precautions are taken limb salvage can be achieved.

References

  1. Geerlings SE and Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 1999 Dec;26(3-4):259-265.
  2. Tater D, Tepaut B, Bercovici JP, Youinou P. Polymorphonuclear cell derangements in type 1 diabetes. Horm Metab Res 1987;19:642-647.
  3. Moutschen MP, Scheen AJ and Lefebvre PJ. Impaired immune responses in diabetes mellitus: analysis of the factors and mechanisms involved in relevance to the increased susceptibility of diabetic patients to specific infections. Diabetes Metab 1992;18:187-201.
  4. Hostetter MK. Perspectives in diabetes. Handicaps to host defense. Effects of hyperglycemia on C3 and Candida albicans. Diabetes 1990;29:271-275.
  5. Andersen B, Goldsmith GH and Spagnuolo PJ. Neutrophil adhesive dysfunction in diabetes mellitus; the role of cellular and plasma factors. J Lab Clin Med 1988;111:275-285.
  6. Geerlings SE, Brouwer EC, Gaastra W, Verhoef J and Hoepelman AI. The effect of glucose and pH on uropathogenic and non-uropathogenic escherichia coli: studies using urine from diabetics and non-diabetics. J Med Microbiol 1999;48:535-539.
  7. Deresinski S. Infections in the diabetic patient: strategies for the clinician. Infect Dis Rep 1995;1:1-12.

Choice of surgical treatment for patients with arthrosis of the ankle joint

by Kirill S. Mikhaylov1, Vladimir G. Emelyanov2, Alexandr Yu Kochish3, Aleksandr A. Bulatov4

The Foot and Ankle Online Journal 11 (1): 3

The purpose of this study was to justify the algorithm of rational choice of surgical treatment in patients with arthrosis of the ankle joint, based on a comparative analysis of risk factors for poor results after surgery involving ankle fusion and ankle arthroplasty. We evaluated the efficiency of ankle fusion (63 patients) and ankle joint replacement (71 patients). All patients were divided into 2 groups – prospective (6, 12 and 24 months) and retrospective (3, 5, 7 and 10 years). The results were evaluated with the help of a visual analogue scale (VAS) and the 100-point AOFAS scale; we also performed X-ray examinations. The longest follow-up period was 10 years. We found that the desirable angles of ankle fusion ranging from 900– 950 could reduce the chance of the rapid progression of arthritis in the joints of the middle part of the foot. For ankle joint replacement we identified a significant risk factor for the most frequent complication, which was aseptic instability of the implant components. From the results of our analysis we suggest an algorithm of surgical treatment in patients with terminal stage arthrosis of the ankle joint.

Keywords: ankle joint, arthrosis of the ankle joint, ankle arthroplasty, ankle fusion, risk factors of poor treatment outcomes

ISSN 1941-6806
doi: 10.3827/faoj.2018.1101.0003

1 – Cand. Sci (Med), researcher, Vreden Russian Research Institute of Traumatology and Orthopaedics, Saint Petersburg, Russia.
2 – Cand. Sci (Med), head of traumatology and orthopaedics department № 19, Vreden Russian Research Institute of Traumatology and Orthopaedics.
3 – Dr. Sci. (Med), Professor, deputy director for research and academic affairs, Vreden Russian Research Institute of Traumatology and Orthopaedics.
4 – Cand. Sci (Med), Vreden Russian Research Institute of Traumatology and Orthopaedics, department № 19.
* – Corresponding author: web2@mail.ru


The improvement of methods of surgical treatment for patients with late stages of deforming arthrosis of the ankle joint is one of the priority goals of modern traumatology and orthopaedics [1,2]. Currently, patients with the specified pathology undergo two main types of surgery: the first is ankle joint arthrodesis which has been used since the beginning of surgical orthopedics and the second is total ankle replacement (TAR) which has been used in clinical practice since the 1970s [3,4] and quickly became an accepted method. According to the literature both specified methods of surgical treatment have advantages and disadvantages and also show different results in the present day compared with the past. Therefore the choice of one of these methods presents certain difficulties. Indications and contraindications for performing either of these surgeries are discussed in the following articles [5-9].

Surgeries of each type are quite often followed by complications and pathological states that substantially worsen the result of treatment in both the short and long term. In particular, after ankle joint fusion patients often develop degenerate and dystrophic changes in joints of the middle part of the foot and in addition, compensatory loads of the overlying large joints of the lower extremity lead to increased development of a pain syndrome [7]. Operations involving TAR increase the risk of future development of a number of pathological states such as destruction of the established prosthesis designs, aseptic instability of their components and a deep periprosthesis infection [10-12]. Therefore, introduction of TAR surgeries has been approached cautiously in clinical practice around the world. Indeed, according to the German register of operations, arthrodesis of the ankle joint is carried out approximately 3 times more often than its endoprosthesis replacement; the number of annually established endoprostheses of the ankle joint is about 1300 [13].

On the other hand, the relevant literature also has suggestions from some orthopaedists to greatly expand the indications for arthroplasty of the ankle joint [14,15]. In particular, there are publications describing operations with the angles of varus or valgus deformities in this joint over 20° [16-18], at the site of tumoral damage of the tibia or talus [19], at defects of a talus [20] and also at the fracture of an earlier arthrodesis of the ankle joint [21-23].

The analysis of literature on this subject has convinced us that the comparative efficiency of operations of an ankle fusion and TAR, especially regarding long-term performance, and also risk factors of the development of a number of pathological states, are insufficiently studied and need to be further investigated. Here, we have discussed the choice of a method of surgical treatment for patients with late stages of deforming arthrosis of the ankle joint based on the analysis of significant risk factors of unsatisfactory outcomes. The investigation of the practical importance of the above unresolved questions was one of the purposes of this study.

In addition, we attempted to justify an algorithm for the choice of a surgical treatment of patients with late stages of deforming ankle joint arthrosis, on the basis of a comparative analysis of risk factors for unsatisfactory outcomes after ankle fusion and TAR.

Materials and Methods

We performed an analysis of the most common noninfectious complications and unsatisfactory outcomes of treatment after these 2 surgeries to detect significant risk factors in 2 clinical groups of patients during the period from 2003 to 2014. The first of these groups (63 patients) underwent biarticulated arthrodesis of the talocrural and subtalar joints using the interlocked intramedullary nail. The second group (71 patients) underwent TAR using 3 implants of the third generation: Mobility (DePuy) 27, Hintegra (NewDeal) 37, and STAR (Waldemar Link) 7. Gender and age characteristics of patients of the 2 specified clinical groups are provided in Tables 1 for comparison.

Group Ave age (years) Sex Total
М F
1 53,8±5,8 30 (47,6%) 33 (52,4%) 63 (100%)
2 48,1±4,2 29 (40,9%) 42 (59,1%) 71 (100%)

Table 1 Age and sex of patients of the first clinical group.

Radiological examination was used to diagnose the deforming arthrosis of the talocrural and subtalar joints for all 63 patients of the first clinical group and was based on the classification of Kellgren et al [24]. At the same time we established that 7 (11.1%) patients had stage II with expressed pain syndrome, 31 (49.2%) patients had stage III and 25 (39.7%) patients had stage IV. Among patients of the second group, 15 (21,1%) patients had stage II, 41 (57,8%) patients had stage III and 15 (21,1%) patients had stage IV of arthrosis of the ankle joint.

Of note, the reasons for the deforming ankle joint arthrosis in patients of both clinical groups, including injuries and disease were similar, both in aetiology, and in share ratios; therefore correct comparisons could be made.

Taking into account how the results of the surgeries were assessed and the availability of information for unsatisfactory outcomes, patients of the first and second groups were allocated to 2 prospective (49 and 31 patients) and 2 retrospective (14 and 40 patients) subgroups. The corresponding examinations of patients in the prospective subgroups were conducted at 6, 12 and 24 months, and in the retrospective subgroups  after 3, 5, 7 and 10 years after treatment. For all patients, we carried out an objective and radiological inspection of the feet including an X-ray analysis with the necessary projections and patients also completed scores for VAS and AOFAS. Of note, all patients included in the research underwent surgery in the clinic by one team of surgeons in order to avoid differences in the result of treatment due to different operational techniques and equipment.

Results

In the prospective subgroup of the first clinical group 2 years after surgery for a biarticular arthrodesis of the ankle joint and subtalar joints, also AOFAS (less than 50 points) was recorded 9 (18.4%) the unsatisfactory results of the carried out treatment on scales VAS (more than 6 points). At the same time, for 3 patients unsatisfactory results were caused in the 12 months after treatment by an unsuccessful arthrodesis in the talocrural and subtalar joints that necessitated carrying out repeated arthrodesis. Also, 6 other patients with poor clinical and functional outcomes of treatment have been associated with a 2-year period of postoperative osteoarthritis in the joints of the middle part of the foot, accompanied by severe pain syndrome and dysfunction of the feet which had undergone surgery.

Additionally, the analysis of the angles of ankylosis of the ankle joint in the sagittal plane showed that 4 of these 6 patients had a pathological condition; this angle ranged from 101° to 105°, which is confirmed by the radiographs in Figure 1. The other 2 patients with this pathology showed that the corners angles of ankylosis of the ankle joint ranged from 96°–100° and had angles of 90°–95°; these unsatisfactory outcomes were not noted until 2 years after surgical treatment (Table 2).

Figure 1 The ankylosis of an ankle joint at an angle of 101°; arthrosis of joints of the middle part of the foot in an 82-year-old patient with pain syndrome (7 points on a scale VAS), 2 years after surgery.

The studied parameters Fusion angle The average for the group
90–95 96–100 101–105
VAS 2.5±0.4 2.6±0.3 2.8±0.3 2.6±0.3
AOFAS 77±3.5 75±3.6 70±3.6 74±3.5
Numbers of patients 7 (15.2%) 28 (60.9%) 11 (23.9%) 46 (100%)

Table 2 Outcomes in patients of the first clinical group 2 years after surgery, indicating the fusion angle.

In the analysis of the end result of treatment in the retrospective subgroup of the first clinical group, we found that 5 years after surgery of a biarticular arthrodesis the average scores for VAS and AOFAS were worse (R <0.05) for patients with the angle of an ankylosis of 101°–105°, in comparison with patients for whom this corner ranged from 90°–95°.

The analysis of treatment outcomes showed that in all circumstances the best clinical functional results for patients of the first clinical group were achieved with ankle joint ankylosis corners in the sagittal plane from 90°–95°, and the corresponding corners with values within 101°–105° were in fact significant risk factors for unsatisfactory treatment outcomes (Table 3).

Angle VAS AOFAS
Bad

7–10

Satisfactory

5–6

Good

2–4

Bad

1–50

Satisfactory

51–74

Good

75–100

90– 95 6 (13%) 1 (2,3%) 2 (4,3%) 5 (10,9%)
96–100 2 (4.3%) 24(52.2%) 2 (4.3%) 2 (4.3%) 24(52.2%) 2(4.3%)
101– 105 2 (4.3%) 7(15.2%) 2 (4.3%) 4 (8.7%) 7 (15.2%)
Total 4 (8.7%) 37(80.4%) 5(10.9%) 6 (13%) 33(71.7%) 7(15.2%)

Table 3 Qualitative index for 2-year treatment results using the AOFAS and VAS scales depending on the angle of fusion.

For patients of the second clinical group, the most frequent reason for unsatisfactory treatment results from 6 months until 10 years post-surgery was an aseptic instability of components of the installed ankle joint endoprostheses. Therefore, special attention was paid in our work to the detection of significant risk factors of this emerging pathological state. We found that in the prospective subgroup of patients radiological signs of instability of the established designs were observed 2 years after the surgery in 6 (19.4%) of 31 patients under clinical supervision. However, the presence of a severe pain syndrome and essential decrease in functionality which necessitated carrying out a repeat operation (fusion) was reported only by one (3.2%) patient of the prospective subgroup.

Figure 2 The result 5 years after total ankle replacement (left side) in a 42-year-old patient with use of a Hintera implant (NewDeal): a) radiological signs of instability of an endoprosthesis: the slight shift backwards of a tibial component and a sagging of a talus component due to decreased height of a talus; b) satisfactory functional result: 3 points on a VAS and 69 points on the AOFAS.

In the retrospective subgroup from 3 to 10 years after treatment radiological signs of instability of components of ankle joint endoprostheses of were recorded for 16 (40%) of 40 observed patients. In addition, using scores of VAS and AOFAS, patients with this complication had worse average values of these indicators (R <0.01), than other patients of the subgroup. However, the revised procedures including removal of unstable implants with the subsequent biarticulate fusion of the ankle and subtalar joints were only carried out by interlocking intramedullary nails in 7 (43.8%) of 16 patients, as the other 9 patients preferred to keep the established endoprostheses. It should be particularly noted that these 9 patients had only radiological signs of instability of the endoprosthetic components without their essential migration regarding bone bed, and they had a satisfactory functional result of treatment.

An example of a satisfactory functional result can be observed (Figure 2) 5 years after TAR with the presence of radiological signs of instability of the established construction. However, it is necessary to note that the patient did not demand a high functional load from the operated ankle joint.

Special attention in our research was paid to the detection of risk factors for developing aseptic instability of endoprostheses of the ankle joint. A search was carried out concerning 2 groups of the factors noted in the relevant literature [4,15,17,22,25,26,27,28]. The first group of risk factors included various deformations of the bones forming the ankle joint. The second group included the age of patients, the related physical activity, and also functional loads of the operated joints as significant factors. It should be noted that such analyses were carried out separately in the prospective subgroup (31 patients) and in the retrospective subgroup (40 patients). The results are presented in Tables 4 and 5.

Anamnesis Age of patients, years Total
20–39 40–54
Change of a distal metaphysis of tibia 3 (50%) 3 (50%)
Fracture of ankle bones 1 (16,7%) 1 (16,7%)
Fracture of a collision bone 1 (16,7%) 1 (16,7%)
Deforming ankle joint arthrosis 1 (16,7%) 1 (16,7%)
Total 1 (16,7%) 5 (83,3%) 6 (100%)

Table 4 The anamnesis and age of patients who had aseptic instability of ankle joint endoprostheses 2 years after surgery.

Anamnesis Age of patients, years Total
20–39 40–54 55 and older
Change of a distal metaphysis of tibia 3 (18,8%) 3 (18,8%)
Fracture of ankle bones 2 (12,5%) 2 (12,5%) 4 (25%)
Fracture of a collision bone 6 (37,5%) 6 (37,5%)
Deforming ankle joint arthrosis 1 (6,3%) 1 (6,3%) 1(6,3%) 3 (18,7%)
Total 3 (18,8%) 12 (75%) 1(6,3%) 16 (100%)

Table 5 The anamnesis and age of patients who had aseptic instability of ankle joint endoprostheses from 3 to 7 years after surgery.

The analysis showed that the risk of aseptic instability of endoprosthesis components of the ankle joint during all periods of observation was clearly associated with previous fractures of the bones forming the joint. As can be seen from Tables 3 and 4, such fractures occurred in 5 of 6 patients with this pathological condition in the prospective sub-group and in 13 of 16 patients in the retrospective subgroup. In addition, we observed that the vast majority of these states (21 of 22 or 95.5%) occurred in patients under the age of 55 years. The proportion of patients with aseptic instability of the implant in the subgroup of patients younger than 55 years was 34.4% (21 of 61) and in the subgroup of 55 years and older only 10% (1 of 10). It should also be noted that in 19 (86.4%) of the 22 cases of aseptic instability of endoprosthesis components, these patients performed activities involving high functional loads on the ankle joint in the postoperative period.

Analysis of the models installed as ankle joint implants in patients diagnosed with aseptic instability of the implant did not reveal any significant advantages for any 1 of the 3 used structures. Studied implants of the third generation have a similar clinical effectiveness with respect to the development of the discussed pathological conditions.

The analysis revealed the following significant risk factors of aseptic instability of endoprosthesis components of the ankle joint: previous fractures of bones forming the joint, an age of up to 55 years, and a high functional load on the operated joints in the postoperative period.

The results of our study and related data of specialized scientific publications helped to substantiate and propose the algorithm for choosing a rational method of surgical treatment of patients with terminal stages of deforming arthrosis of the ankle joint. The algorithm involves the separation of diagnostic procedures in 2 stages and in sequence, as shown in the diagram (Figure 3).

Figure 3 The algorithm for choosing the method of surgical treatment of patients with terminal stages of deforming arthrosis of the ankle joint.

At the beginning of the patient examination, we performed an assessment of the current stage of deforming arthrosis of the ankle joint. These data, along with the severity of pain, are crucial to the choice between conservative or surgical treatment of such patients. Particular attention should be given to the severity of the deformity. It is known that gross deformation of bones forming the ankle joint, in particular varus or valgus angles greater than 10°, practically excludes the possibility of adequately installing the endoprosthesis components and does not predict a long and successful outcome. Therefore, patients with these gross deformities of the ankle joint should be encouraged to undergo fusion of the affected joints.

Other patients with no such deformations can be considered as candidates for surgery involving endoprostheses of the ankle joint. However, it is advisable to assess the presence of risk factors for the development of pathological conditions that cause poor outcomes of surgical treatment such as aseptic instability of the endoprosthesis components. These factors, according to the proposed algorithm (Figure 3), should be evaluated at the second stage of selecting a rational method of surgical treatment. Among the risk factors for this pathology the age of the patients is very important. Therefore, it is recommended initially to divide all patients into 2 age groups: under 55 years and older (Figure 3).

When evaluating the older age group, patient history of bone fractures of the ankle joint should be specifically assessed. The surgery for replacement of the ankle joint is only recommended for patients without an identified history of fractures, and if there is such a history it is expedient to look for arthrosis of the affected joints. In the group aged under 55 years, the selection method for surgery should be generally performed in accordance with the same principles as that of the older patient group. However, the assessment of risk factors for the development of instability of installed implants needs to be performed more fully and carefully.

Therefore, within the presented algorithm (Figure 3). we propose initially to allocate the patients under the age of 55 years into 2 subgroups depending on the presence or absence of a history of fractures of the ankle joint. In the presence of such fractures, it is advisable to offer the patients arthrosis ankle joint. In their absence it is also important to rate their level of anticipated physical activity and consequently, possible future functional load on the operated joints. High physical load on the joints was defined in our studies as one of the important risk factors of aseptic instability of the endoprosthesis components of the ankle joint. Therefore, patients with high demands for future functional loads on the affected joints should be made aware that fusion of the ankle joint has a more reliable positive long-term outcome. In cases of expected moderate physical activity of the treated joints, arthroplasty of the ankle joint can be recommended even at a young age.

Discussion

We have analysed unsatisfactory results of surgical treatment of patients with terminal stages of deforming arthrosis of the ankle joint, and found a number of risk factors for their development. These factors were different and specific for each of the 2 main types of surgery. In our view, these factors can and should be considered primarily at the stage of diagnosis and while determining the severity of pathological changes in the affected ankle joint. This is important both for preoperative planning and during surgery involving fusion or TAR.

The most clinically significant pathology observed a year or more after arthroplasty of the ankle joint is aseptic instability of components of the installed implants. According to authors from other countries, the proportion of patients with this pathological condition varies from 3% to 13.7% in the first 5 years after surgery and from 16% to 32% in the period from 5 to 10 years after the treatment [26,29,30]. In our observations, the proportion of patients with radiographic signs of instability of the endoprosthesis components was 19.4% after 2 years and 40% after 3 to 10 years. However, severe clinical symptoms arising from this condition and requiring repeat surgery were observed much less frequently: 3.2% after 2 years and 17.5% in the later periods of observation. It should be noted that the proportion of patients with aseptic instability of the implants in our study were slightly higher because patients purposely went to a clinic, where endoprosthesis treatment for the ankle joint was undertaken. In addition, patients without this pathology did not always agree to be tested over a long-term period after surgical treatment. In a retrospective sub-group of patients (40 observations) analysis of cases of aseptic instability of the endoprosthesis components of the ankle joint showed that the greatest number of them (and accordingly the highest percentage of the number of patients) was recorded 3 years (5 cases or 17.2%) and 5 years (10 cases or 43.5%) after the operations were performed. After 7 years of observations, these figures decreased (about 1 case of 8 or 12.5%) and when 3 patients were examined after 10 years, signs of this pathological condition were absent.

Among the risk factors for the development of the aseptic instability and, consequently, unsatisfactory outcomes for ankle joint replacement, the proposed algorithm first took into account the severity of deformities in the affected ankle joint. In the literature a direct link between the development of aseptic instability of endoprostheses of the ankle joint and deformations of the articular surfaces of the tibia and talus, and also varus or valgus deviations of more than 100 have been reported [8,15,18,27,28]. In addition, many orthopaedists have reported a higher incidence of this pathology among people of a young age [4,22,25] and also in patients with increased functional load on the previously operated ankle joint, related to high physical activity [26,29]. These findings of other authors were fully confirmed in our study, in particular as illustrated by the data given in Tables 3 and 4. Therefore, all of these risk factors were considered significant and included in the algorithm.

In addition, our study identified opportunities to prevent some of the complications and pathological conditions that lead to poor results of surgical treatment, because of certain requirements during the 2 types of operations. In particular, we found that during surgery for ankle joint arthrodesis the aim should be to form an ankylosis with an angle in the sagittal plane of 90°–95°. If this is achieved, it is possible to prevent the rapid development of deforming arthrosis in the joints of the middle part of the foot, which often leads to decreased function and severe pain in the late postoperative period.

The algorithm presented in the present article is based on results of our own research and data from relevant literature. We have considered significant risk factors of the most frequent pathological states arising after surgeries of fusion and TAR and resulting in poor outcomes. At the same time we have shown that the desirable angles of an ankylosis of the ankle joint in the sagittal plane varying from 90°–95° can reduce the probability of rapid progression of arthrosis in joints of the middle part of the foot. For TAR surgery significant risk factors of development of the most frequent reason of unsatisfactory results of treatment (aseptic instability of the components of the installed designs) were revealed. If these are present, the algorithm assumes refusal of Total Ankle Replacement in favour of the more reliable surgery of ankle joint fusion. However, TAR can be indicated for patients aged 55 years and older and without anamnesis of fractures of the bones forming the ankle joint, and also for younger patients corresponding to these criteria but not expecting high loads on the operated joints.

We hope that practical use of the presented algorithm for selection of a method of surgical treatment will promote the prevention of a number of the pathological states predetermining the poor results of surgeries of both discussed types and will help to improve the outcomes of expeditious treatment.

References

  1. Tikhilov, R. M. Experience of endoprosthesis replacement of an ankle joint in the Russian research institute of traumatology and orthopedics of R. R. Vredena/r.M.//Tikhilov [etc.]//Vestn. traumatology and orthopedics of N. N. Priorov. – 2009. – No. 3. – Page 56-60.
  2. Murphy L, Helmick CG. The impact of osteoarthritis in the United States: a population-health perspective: A population-based review of the fourth most common cause of hospitalization in U.S. adults. Orthop Nurs. 2012 Mar-Apr;31(2):85-91. doi: 10.1097/NOR.0b013e31824fcd42. PubMed PMID: 22446800
  3. Stoyanov A.V., Emelyanov V.G., Pliev D.G., Mikhaylov K.S. ANKLE JOINT REPLACEMENT (REVIEW). Traumatology and Orthopedics of Russia. 2011;(1):144-152. (In Russ.) DOI:10.21823/2311-2905-2011-0-1-144-152
  4. Hintermann, B. Total ankle arthroplasty: history overview, current concepts and future perspectives / B. Hintermann. – Springer, New York, Wien, 2005. – 195 p.
  5. Jordan RW, Chahal GS, Chapman A. Is end-stage ankle arthrosis best managed with total ankle replacement or arthrodesis? A systematic review. Adv Orthop. 2014;2014:986285. doi: 10.1155/2014/986285. Epub 2014 Aug 21. Review. PubMed PMID: 25215242; PubMed Central PMCID: PMC4158286.
  6. Koryshkov N.A., Larionov S.V., Murashova N.A., Sobolev K.A. ANESTHESIA IN SURGERIES ON THE FOOT AND ANKLE (REVIEW).  Traumatology and Orthopedics of Russia. 2012;(3):118-126. (In Russ.) DOI:10.21823/2311-2905-2012–3-118-126
  7. Chou LB, Coughlin MT, Hansen S Jr, Haskell A, Lundeen G, Saltzman CL, Mann RA. Osteoarthritis of the ankle: the role of arthroplasty. J Am Acad Orthop Surg. 2008 May;16(5):249-59. PubMed PMID: 18460685.
  8. Glazebrook MA, Arsenault K, Dunbar M. Evidence-based classification of complications in total ankle arthroplasty. Foot Ankle Int. 2009 Oct;30(10):945-9. doi: 10.3113/FAI.2009.0945. Review. PubMed PMID: 19796587.
  9. Jiang JJ, Schipper ON, Whyte N, Koh JL, Toolan BC. Comparison of perioperative complications and hospitalization outcomes after ankle arthrodesis versus total ankle arthroplasty from 2002 to 2011. Foot Ankle Int. 2015 Apr;36(4):360-8. doi:  10.1177/1071100714558511. Epub 2014 Oct 30. PubMed PMID: 25358807.
  10. Borkosky SL, Mankovecky M, Prissel M, Roukis TS. Polyarticular sepsis originating from a prior total ankle replacement. Clin Podiatr Med Surg. 2013 Jan;30(1):97-100. doi: 10.1016/j.cpm.2012.08.007. Epub 2012 Sep 26. Review. PubMed PMID: 23164442.
  11. Schipper ON, Haddad SL, Pytel P, Zhou Y. Histological Analysis of Early Osteolysis in Total Ankle Arthroplasty. Foot Ankle Int. 2017 Apr;38(4):351-359. doi: 10.1177/1071100716682333. Epub 2016 Dec 1. PubMed PMID: 28367690.
  12. Lee AY, Ha AS, Petscavage JM, Chew FS. Total ankle arthroplasty: a radiographic outcome study. AJR Am J Roentgenol. 2013 Jun;200(6):1310-6. doi: 10.2214/AJR.12.9649. PubMed PMID: 23701070.
  13. Kostuj T, Preis M, Walther M, Aghayev E, Krummenauer F, Röder C. [German Total Ankle Replacement Register of the German Foot and Ankle Society (D. A. F.) – presentation of design and reliability of the data as well as first results]. Z Orthop Unfall. 2014 Oct;152(5):446-54. doi: 10.1055/s-0034-1382933. Epub 2014 Oct 14. German. PubMed PMID: 25313699.
  14. Bibbo C. Controversies in total ankle replacement. Clin Podiatr Med Surg. 2013 Jan;30(1):21-34. doi: 10.1016/j.cpm.2012.08.003. Epub 2012 Oct 6. Review. PubMed  PMID: 23164437.
  15. Coetzee JC. Surgical strategies: lateral ligament reconstruction as part of the management of varus ankle deformity with ankle replacement. Foot Ankle Int. 2010 Mar;31(3):267-74. doi: 10.3113/FAI.2010.0267. PubMed PMID: 20230710.
  16. Schuberth JM, Christensen JC, Seidenstricker CL. Total Ankle Replacement with Severe Valgus Deformity: Technique and Surgical Strategy. J Foot Ankle Surg. 2017 Mar 3. pii: S1067-2516(17)30030-3. doi: 10.1053/j.jfas.2017.01.030. [Epub ahead of print] PubMed PMID: 28268144.
  17. Hobson SA, Karantana A, Dhar S. Total ankle replacement in patients with significant pre-operative deformity of the hindfoot. J Bone Joint Surg Br. 2009 Apr;91(4):481-6. doi: 10.1302/0301-620X.91B4.20855. PubMed PMID: 19336808.
  18. Reddy SC, Mann JA, Mann RA, Mangold DR. Correction of moderate to severe coronal plane deformity with the STAR ankle prosthesis. Foot Ankle Int. 2011 Jul;32(7):659-64. Erratum in: Foot Ankle Int. 2011 Sep;32(9):vi. PubMed PMID: 21972759.
  19. Lampert C. [Ankle joint prosthesis for bone defects]. Orthopade. 2011 Nov;40(11):978-83. doi: 10.1007/s00132-011-1826-2. German. PubMed PMID: 21989687.
  20. Mikhaylov K.S., Emelyanov V.G., Bulatov A.A. Staged bilateral ankle arthroplasty for the treatment of patient with severe defect of the talus (case report).  Traumatology and Orthopedics of Russia. 2013;(2):105-110. (In Russ.) DOI:10.21823/2311-2905-2013–2-105-110
  21. Atkinson HD, Daniels TR, Klejman S, Pinsker E, Houck JR, Singer S. Pre- and postoperative gait analysis following conversion of tibiotalocalcaneal fusion to  total ankle arthroplasty. Foot Ankle Int. 2010 Oct;31(10):927-32. doi: 10.3113/FAI.2010.0927. PubMed PMID: 20964976.
  22. Hintermann B, Barg A, Knupp M, Valderrabano V. Conversion of painful ankle arthrodesis to total ankle arthroplasty. J Bone Joint Surg Am. 2009 Apr;91(4):850-8. doi: 10.2106/JBJS.H.00229. PubMed PMID: 19339569.
  23. Hintermann B, Barg A, Knupp M, Valderrabano V. Conversion of painful ankle arthrodesis to total ankle arthroplasty. Surgical technique. J Bone Joint Surg Am. 2010 Mar;92 Suppl 1 Pt 1:55-66. doi: 10.2106/JBJS.I.01301. PubMed PMID: 20194344.
  24. KELLGREN JH, LAWRENCE JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957 Dec;16(4):494-502. PubMed PMID: 13498604; PubMed Central PMCID: PMC1006995.
  25. Gougoulias NE, Khanna A, Maffulli N. History and evolution in total ankle arthroplasty. Br Med Bull. 2009;89:111-51. doi: 10.1093/bmb/ldn039. Epub 2008 Nov 13. Review. PubMed PMID: 19008282.
  26. Natens P, Dereymaeker G, Abbara M, Matricali G. Early results after four years experience with the S.T.A.R. uncemented total ankle prosthesis. Acta Orthop Belg. 2003;69(1):49-58. PubMed PMID: 12666291.
  27. Weatherall JM, Mroczek K, McLaurin T, Ding B, Tejwani N. Post-traumatic ankle  arthritis. Bull Hosp Jt Dis (2013). 2013;71(1):104-12. Review. PubMed PMID: 24032590.
  28. Wood PL, Karski MT, Watmough P. Total ankle replacement: the results of 100 mobility total ankle replacements. J Bone Joint Surg Br. 2010 Jul;92(7):958-62. doi: 10.1302/0301-620X.92B7.23852. PubMed PMID: 20595114.
  29. Anderson T, Montgomery F, Carlsson A. Uncemented STAR total ankle prostheses.  Three to eight-year follow-up of fifty-one consecutive ankles. J Bone Joint Surg  Am. 2003 Jul;85-A(7):1321-9. PubMed PMID: 12851358.
  30. Barg A, Zwicky L, Knupp M, Henninger HB, Hintermann B. HINTEGRA total ankle replacement: survivorship analysis in 684 patients. J Bone Joint Surg Am. 2013 Jul 3;95(13):1175-83. doi: 10.2106/JBJS.L.01234. PubMed PMID: 23824385