Category Archives: Uncategorized

Conservative surgical management in an extreme diabetic foot case

by JM García-Sánchez1, A Ruiz-Valls1, A Sánchez-García1, A Pérez-García1

The Foot and Ankle Online Journal 11 (1): 2

Diabetes mellitus is one of the most prevalent diseases worldwide and an important cause of morbidity and mortality. Of relevance, due to its complicated management, morbidity and cost associated, is the diabetic foot. Here we present a case of a 51 year-old male diagnosed with  long-standing decompensated Diabetes mellitus with a 2 year history of a foot ulcer. After debridement of the ulcer, preservation of the bony structure was achieved by covering it with a fillet flap. The therapeutic management in patients with advanced diabetic foot should be individualized based on patient characteristics. Oftentimes, conservative amputations entail the need of complex surgical techniques, however, it allows the patient to retain their independence and an improved quality of life.

Keywords: diabetic foot, ulcer,  diabetes mellitus, fillet flap

ISSN 1941-6806
doi: 10.3827/faoj.2018.1101.0002

1 – Department of Plastic, Reconstructive and Aesthetic Surgery, Hospital Universitari i Politèctnic la Fe, Valencia, Spain.
* – Corresponding author: alejruvall@gmail.com


Diabetes mellitus (DM) is one of the most common diseases worldwide with a global prevalence of 8.5%, and increasing every year. Sustained hyperglycemia derives in numerous complications, mostly caused by macro and microangiopathy [1], of special importance are Diabetic Foot Ulcers (DFUs).

Diabetic Foot Ulcers represent an important healthcare issue due to the elevated morbidity, complexity of its management and elevated costs associated with this disease [2]. DFUs have a global prevalence of 6.3% and have a higher prevalence in DM type 2 and male patients [3]. Neuropathy is the most important risk factor for the development of DFUs. Moreover, the addition of different factors such as the of loss of skin integrity, existence of foot deformities (Hallux Valgus, Charcot’s arthropathy, etc.), and peripheral vascular disease ultimately lead to the formation of DFUs [4].  

The course of healing the DFU is arduous due to the impaired cicatrization and granulation processes in these patients, which is frequently complicated with superimposed infections.  Some cases, especially when osteomyelitis is present, require limb amputation as the sole therapeutic option. However, it is imperative to remain as conservative as possible, since amputations suppose a great psychological and functional impact that can pose a decrease in quality of life.

Here we present a case of a patient with a complicated DFU that was managed with conservative surgical treatment without undergoing amputation.

Case Report

A 51 year old male was first evaluated in the outpatient setting for a 1-year history of a DFU on the right foot. His medical history included a atrial fibrillation, dyslipidemia, hypertension, and a poorly controlled insulin-dependent DM with development of retinopathy, nephropathy and cardiac disease. The patient was also an active smoker with over 30 years of smoking history. A transmetatarsal amputation from the 2nd to the 5th toes on the right foot was previously carried out in a different hospital due to inadequate healing of a DFU. The surgical wound was complicated with a dehiscence, which remained as an ulcer that impeded the patient from ambulating.

The physical examination showed a lateral subluxation of the first metatarsophalangeal joint, an ulcer on the amputation stump, with granulation on the base and no inflammatory signs, proliferative signs, dermatosclerosis or hyperpigmentation of the skin edges (Figure 1). Additionally, the patient presented signs of chronic venous insufficiency, hence the induration hindered lower limb distal pulse examination. Plantar protective sensation was severely diminished.

An MRI was performed, which showed findings suggestive of osteomyelitis of the remnants of the 3rd, 4th and 5th toe, the anterior portion of the cuboid bone, and the navicular bone of the right foot. These findings were later confirmed with a gamma scan. The CTA scan showed bilateral permeability of the aortoiliac, femoropopliteal, and distal infrapopliteal trunks.

Given these findings a new surgical approach was conducted, with resection of the remnants of the 2nd to 5th toes, cuboid bone, cuneiform bones, as well as the anterior portion of the navicular bone (Figure 2), a fillet flap from the hallucis and the plantar skin was performed to provide coverage of the cutaneous defect (Figure 3).

The pathology report indicated the presence of a verrucous squamous cell carcinoma. However, no infiltrative component was seen in the specimen and the margins were disease free.

Figure 1 A 51 year old male with a lateral luxation of the metatarsophalangeal joint of the hallucis (Left). Ulcer presence on the amputation stump (Right). Frontal (Left) and plantar (Right) view.

Figure 2 Surgical excision of the remnants of the 2nd to 5th toes, cuboid bone, cuneiform bones, as well as the anterior portion of the navicular bone.

The postoperative course was uneventful with a favorable healing towards the resolution of the surgical wound, which was supported by a tight glucose control and a smoking cessation program. Two months after the intervention the patient has a healthy-appearing stump that allows ambulation (Figure 4).

Figure 3 Foot defect after resection (Left). Coverage with a fillet flap from the hallucis and the plantar skin (Right).

Figure 4 Postoperative result two months after the intervention. Frontal (Left) and posterior (Right) view.

Discussion

Complicated diabetic foot poses a risk of amputation and early mortality in diabetic patients. With a 10-fold increase in amputation rate of the lower limb for diabetic patients, according to WHO. Furthermore, the mortality rate is also increased 3-fold within a year of the amputation compared to non-amputated diabetic patients [6].

The course of DFUs is usually difficult owing to a deficient granulation and cicatrization, and commonly complicated with superimposed infections. DFUs that persist over time can sometimes lead to malignant transformation; most frequently squamous cell carcinoma [5]. All of these result in wide surgical excisions and, sometimes inevitably amputations.

There are different amputation levels of the lower limb, those that result in above-the-ankle amputation are considered major amputations, and those that spare the ankle are defined as minor amputations [7]. Regarding amputation-related-mortality, Evans et al, showed a mortality of 20% in the 2-year follow-up after a minor amputation compared to the 52% seen in patients who underwent a major amputation [8].

Numerous studies support the need to be as surgically conservative as possible, with limb conservation procedures, since energetic output is increased progressively as an amputation becomes more proximal [9]. Moreover, several patients present with several comorbidities, as in the case presented, and are non-candidates for rehabilitation after major amputations. Hence, preservation of the majority of the limb with partial minor amputations can result in an improved functional status [10]. Likewise, minor amputations may confer the possibility to ambulate for short distances without the need of prosthesis, allowing the patient to perform many daily-living activities, and thus, having a major impact on quality of life [8].  In some cases, in order to achieve minor amputations, the complexity of the surgical techniques is considerably higher and are often unconventional procedures that surgeons might not be familiarized with. In the case presented, due to patient conditions, impaired sensibility, presence of osteomyelitis, and the condition of the foot soft tissues, initially the decision was to perform a major amputation. Nevertheless, the scarce possibilities for adaptation to a prosthetic device and ambulation after amputation, a more conservative approach was planned. Therefore, preservation of the non-osteomyelitic bone and coverage of the skin defect with an adipocutaneous fillet flap from the hallux and the plantar surface provided a stable coverage without any added morbidity.

The fillet flap is well described in the literature as an alternative for large defects that require coverage without sacrificing the length of the extremity [11].  It provides superb mechanical stability plus an added quasi-normal sensitivity to the stump. Additionally, utilizing plantar tissue also provides an excellent, and long-lasting, surface for the stump [12].

Conclusion

Diabetic patients with DFUs should undergo individualized treatment based on their characteristics. In certain cases, a more conservative amputation, despite being more technically challenging, allows the patient to have a better quality of life as well as more independence.

Conflict of interest declaration

No conflict of interest to disclose.

References

  1. Pérez NF, Pérez CV, Llanes JA. Las amputaciones de dedos abiertas y cerradas: su evolución en el pie diabético. Rev Cuba Angiol Cir Vasc. 2010;11(1):89–100.
  2. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med. 2017 Mar;49(2):106–16.
  3. Al-Rubeaan K, Al Derwish M, Ouizi S, Youssef AM, Subhani SN, Ibrahim HM, et al. Diabetic foot complications and their risk factors from a large retrospective cohort study. PloS One. 2015;10(5):e0124446.
  4. Allen L, Powell-Cope G, Mbah A, Bulat T, Njoh E. A Retrospective Review of Adverse Events Related to Diabetic Foot Ulcers. Ostomy Wound Manage. 2017 Jun;63(6):30–3.
  5. Scatena A, Zampa V, Fanelli G, Iacopi E, Piaggesi A. A Metastatic Squamous Cell Carcinoma in a Diabetic Foot: Case Report. Int J Low Extrem Wounds. 2016 Jun;15(2):155–7.
  6. Hoffstad O, Mitra N, Walsh J, Margolis DJ. Diabetes, Lower-Extremity Amputation, and Death. Diabetes Care. 2015 Oct;38(10):1852–7.
  7. Wukich DK, Hobizal KB, Brooks MM. Severity of Diabetic Foot Infection and Rate of Limb Salvage. Foot Ankle Int. 2013 Mar;34(3):351–8.
  8. Evans KK, Attinger CE, Al-Attar A, Salgado C, Chu CK, Mardini S, et al. The importance of limb preservation in the diabetic population. J Diabetes Complications. 2011 Jul;25(4):227–31.
  9. Czerniecki JM, Morgenroth DC. Metabolic energy expenditure of ambulation in lower extremity amputees: what have we learned and what are the next steps? Disabil Rehabil. 2017 Jan 16;39(2):143–51.
  10. Pinzur MS, Gold J, Schwartz D, Gross N. Energy demands for walking in dysvascular amputees as related to the level of amputation. Orthopedics. 1992 Sep;15(9):1033-1036.
  11. Chung S-R, Wong KL, Cheah AEJ. The lateral lesser toe fillet flap for diabetic foot soft tissue closure: surgical technique and case report. Diabetic Foot Ankle. 2014 Jan;5(1):25732.
  12. Janssen D, Adolfsson T, Mani M, Rodriguez-Lorenzo A. Use of a pedicled fillet foot flap for knee preservation in severe lower extremity trauma: A case report and literature review. Case Rep Plast Surg Hand Surg. 2015 Dec 23;2(3–4):73–6.

Effects of a foot orthosis custom-made to reinforce the lateral longitudinal arch on three-dimensional foot kinematics

by Shintarou Kudo1, Yasuhiko Hatanaka2, Toshihiro Inuzuka3

The Foot and Ankle Online Journal 11 (1): 1

There is extensive evidence of the benefits of a foot orthosis; however, it is dependent on the skill and experience of the clinician. The purpose of this study was to clarify the effects on 3D foot kinematics of a custom-made foot orthosis (CMFO) which reinforced the lateral longitudinal arch, without subjective assessments. All eighteen feet of nine normal volunteers who had a flat-foot deformity were included in this study. The CMFO was designed according to each participant’s foot shape using high-density polyethylene for the medial CMFO. The lateral part of the CMFO was then designed to cover the lateral longitudinal arch using polypropylene and was made to fit the medial CMFO. The full CMFO was defined as the medial CMFO together with the lateral CMFO. Eleven reflective skin markers were mounted over the anatomical landmarks of the foot and foot motion during the forward lunge without stride were recorded using eight infrared cameras; the spatial coordinates of those markers were then calculated. Differences between the three conditions: without CMFO, with medial CMFO and with full CMFO in displacement of all markers, were then calculated during the forward lunge. Medial movements of the third metatarsal base, and the medial and posterior top of the calcaneus with the full CMFO were significantly smaller than those with the medial CMFO. Therefore, the full CMFO which reinforced the lateral longitudinal arch could cause reduced movement of the rear-foot indicated by the calcaneus during the forward lunge. Our CMFOs demonstrate that changing the stiffness of the lateral part of the CMFO could reduce rear-foot motion in the medial direction without any form change. This might help with the manufacture of an appropriate CMFO without subjective assessment.

Keywords: custom made foot orthosis, lateral longitudinal arch, flat foot

ISSN 1941-6806
doi: 10.3827/faoj.2018.1101.0001

1 – Department of Physical therapy, Morinomiya University of Medical Sciences Osaka, Japan
2 – Department of Physiotherapy, Suzuka University of Medical Science, Suzuka-City, Japan
3 – Sports Orthotic Laboratory
* – Corresponding author: shintarou.iimt@gmail.com


The foot is made up of the seven tarsal bones, five metatarsals, and fourteen phalanges. The human foot has three arches: the medial longitudinal arch, the lateral longitudinal arch, and the transverse arch, and these play three important roles. The first is to buffer the impact force during the loading response. Second is maintenance of the stability and support of the lower limb, and third is assistance in forward propulsion during locomotion. Dysfunction of the three arches of the foot leads to excessive mechanical stress on the lower limbs. Flat-foot deformity, which is defined as decreased height of the medial longitudinal arch with excessive foot pronation, has been linked to various conditions including medial tibial stress syndrome [1-3], anterior knee pain syndrome [4], Achilles tendinopathy [5, 6], and plantar fasciitis [7, 8].

Foot orthoses (FOs) are frequently-prescribed interventions for flat-foot deformity [9-11]. FOs generally aim to realign skeletal structures, alter movement patterns of the lower extremity during gait and most importantly, reduce symptoms associated with lower limb conditions [11,12]. Custom-made foot orthoses (CMFOs) are widely known as one of the conservative treatments for overuse injuries [13].

Several researchers have investigated the effects of CMFOs in producing positive clinical outcomes [14-17]. Previous studies have shown that CMFOs influence the biomechanics of the lower limb [10, 18-23]. In foot kinematics, many studies have shown that FOs which aim to support the medial longitudinal arch reduce the pronation of the foot [24, 25]. McLean, et al, reported that a 6-week intervention using semi-rigid CMFOs led to a significant decrease in maximum eversion angle and velocity of the rear-foot [26]. Moreover, a significant decrease in the maximum ankle inversion moment and angular impulse during the loading phase and impact peak has been reported with the use of a semi-rigid CMFO [26]. Kido, et al, assessed the effects of insoles which raised the medial longitudinal arch by 10 mm with an inner wedge for flat-foot deformity using subject-based three-dimensional (3D) computed tomography (CT) models [27]. They reported that therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. CMFOs for flat-foot deformity cause increased activity of the tibialis anterior and decreased activity of the peroneus longus during the contact phase of gait and increased activity of the tibialis posterior and decreased activity of the peroneus longus during midstance and propulsion phase [28]. A review by Landorf, et al, concluded that the CMFO is one of the effective interventions for heel pain [29].

Many types of CMFO are aimed at supporting the medial longitudinal arch, although the foot arch consists of three arches. Kudo, et al, reported that it is important for the 3D foot kinematics of the foot in flat-foot deformity to be maintained, not only with regard to the medial longitudinal arch but also the lateral longitudinal arch [30]. There is a great deal of evidence supporting the benefits of a foot orthosis; however, it is dependent on the skill and the experience of the clinicians, and it is unclear how the material and form used influence foot kinematics and lower limb kinetics. In the clinical setting, foot conditions during motion are assessed by motion observation which is not a quantitative assessment. Thus, the most important assessment used in the manufacture of foot orthoses lack an objective focus, and it is necessary to individually mold and paste the orthosis. Consequently there is a requirement to provide foot orthoses based on foot biomechanics without subjective assessments. The purpose of this study was to clarify the effects on 3D foot kinematics of CMFOs which reinforce the lateral longitudinal arch without subjective assessments.

Methods

All eighteen feet of nine volunteers (age; 20.6 ± 0.7 years, height; 162.6 ± 8.1 cm, weight; 54.7 ± 6.9 kg, male/female; 2/7) with flat-foot deformity were included in this study. Subjects did not have any pain of the lower limb, nor any pain history. The flat-foot deformity was defined as a score of more than five points on the Foot Posture Index version six (FPI-6) [31].  Ethical approval was obtained from the Morinomiya University of Medical Sciences and informed consent was obtained from all participants.

The foot shape was modeled using a foot impression box at the bench setting. A plaster foot model was created based on the foot impression, and the CMFO molded from the plaster foot model using high density polyethylene for the medial part of the CMFO (Figure 1-a). The lateral part of the CMFO which covered the heel and cuboid was created using polypropylene (Figure 1-b) and was made according to the medial CMFO. The full CMFO was defined as the medial CMFO mounted on the lateral CMFO.

Reflective skin markers were mounted over eleven anatomical landmarks which were the 1st, 2nd, and 5th metatarsal heads (MTH) and the 1st, 3rd, and 5th metatarsal bases (MTB), the navicular (NAV), the cuboid (CUB), and the medial, lateral and posterior top of the calcaneus (CALM, CALL, CALP). Foot motions during the forward lunge without stride were recorded using eight infrared cameras (VICON vero, VICON, Oxford, UK) at 100 Hz, and the spatial coordinates of the markers were calculated, while ground reaction forces were captured using two AMTI force plates at 1,000 Hz (BP600900, Advanced Mechanical Technology Inc., Watertown, MA, USA).

Figure 1 Picture of the CMFO. a: Medial CMFO b:Lateral CMFO c: Medial view of the medial CMFO d: Lateral view of the medial CMFO. The CMFO according own plaster foot model using the high density polyethylene as the medial CMFO (a,c,d). And the lateral part of the CMFO which was covered on the heel and cuboid using the polypropylene were made according to the full CMFO (b).

Figure 2 Forward range of motion. A: Starting position of the forward lunge involved standing upright with measurement foot stance one step forward. B: Whole plantar surface in contact with floor and the body weight was loaded on the forefoot.

Vicon Nexus software was used to reconstruct the three-dimensional coordinates of each marker during motion. Cut-off frequency was 10 Hz using a Butterworth digital filter. The starting position of the forward lunge involved standing upright in a stance with the measurement foot one step forward (Figure 2). The entire plantar surface was maintained in contact with the floor and approximately 70–80 percent of the body weight was loaded on the forefoot. Subjects were instructed to complete the forward lunge within 1 second or less, and they were allowed enough time to practice. Five repetitions of the forward lunge were performed.

Each marker was tracked from the starting position to the forefoot weight-loading position in which the lower leg was maximally-inclined forward and the displacement of each marker was calculated. The differences in the displacement of each marker among the three conditions of without CMFO, medial CMFO and full CMFO were analyzed using the Freedman test and the post-hoc Bonferroni test. Statistical analyses were performed using SPSS ver24 (IBM Corp., Armonk, NY, USA), and significance was set at P < 0.05.

Results

The three-dimensional movement of the markers is shown in Tables 1, 2, and 3. In the mediolateral direction (Table 1), all markers moved medially during the forward lunge, and almost all markers, with the exception of MTH5, showed a significant difference among the three conditions. Movements of the foot markers with the medial and full CMFO were smaller than those without the CMFO. Moreover, movements of MTB3, CALM, and CALP with the full CMFO were significantly smaller than those with the medial CMFO.

In the anteroposterior direction (Table 2), all markers moved forward during the forward lunge. Movements of the MTH2, MTB1, CUB, NAV, CALL and CALP markers were significantly different among the three conditions. Movements of the MTB1, CUB and NAV markers with the medial CMFO were significantly smaller than those without the CMFO, while the forward movement of the NAV with full CMFO was also smaller than that without the CMFO. The movements of the MTB1, CALL and CALM markers with the full CMFO were larger than those with the medial CMFO.

In the vertical direction (Table 3), all markers except the CALP, which was elevated, were reduced during the forward lunge. Movements of most of the markers except the MTH5, MTB5 and CALL were significantly different among the three conditions. The movements of the MTH2, MTB3 and CUB with the full CMFO were significantly larger than those without the CMFO. Movements of the CALM and NAV with full CMFO were significantly smaller than those without the CMFO. Movements of the MTH1, MTH2, MTB3, MTB1 and CUB with the full CMFO were significantly larger than those with the medial CMFO.

Without CMFO Medial CMFO Full CMFO p-value
MTH1 4.41 ( 3.09 5.66 ) 3.24 ( 2.10 4.94 ) † 2.59 ( 2.38 4.05 ) † <0.01
MTH5 2.69 ( 1.75 3.85 ) 2.08 ( 1.63 3.19 ) 2.18 ( 1.66 2.76 ) 0.31
MTH2 3.53 ( 1.87 4.25 ) 2.45 ( 1.43 3.62 ) † 2.30 ( 1.42 3.27 ) † <0.01
MTB3 4.32 ( 3.08 6.23 ) 3.69 ( 2.28 4.78 ) † 3.27 ( 1.90 3.78 ) † †† <0.001
MTB5 4.51 ( 2.88 6.19 ) 3.40 ( 2.27 5.00 ) † 3.26 ( 2.01 4.43 ) † <0.001
MTB1 4.88 ( 3.66 6.33 ) 3.79 ( 2.52 5.36 ) † 3.24 ( 2.03 4.26 ) † <0.001
CUB 3.73 ( 3.17 5.98 ) 2.92 ( 2.37 3.79 ) † 2.97 ( 1.67 3.61 ) † <0.01
NAV 5.64 ( 4.80 6.44 ) 4.60 ( 3.44 6.37 ) 4.37 ( 3.57 6.00 ) † <0.05
CALM 5.33 ( 3.99 6.72 ) 3.64 ( 2.60 5.50 ) † 2.76 ( 1.91 4.43 ) † †† <0.001
CALL 5.06 ( 4.65 6.91 ) 3.52 ( 2.99 4.00 ) † 3.15 ( 2.30 4.65 ) † <0.01
CALP 6.11 ( 4.42 7.33 ) 3.74 ( 2.63 6.33 ) † 2.63 ( 1.99 4.75 ) † †† <0.001

Table 1  The medial movement of the each makers [mm]. †:difference between without CMFO ††: difference between medial CMFO.

Without CMFO Medial CMFO Full CMFO p-value
MTH1 1.43 ( 1.14 2.91 ) 1.25 ( 1.02 1.99 ) 1.53 ( 1.03 2.05 ) 0.06
MTH5 1.17 ( 0.85 1.25 ) 0.94 ( 0.68 1.34 ) 0.79 ( 0.58 1.17 ) 0.21
MTH2 1.40 ( 1.06 2.35 ) 1.30 ( 1.02 1.69 ) 1.46 ( 0.70 1.94 ) <0.05
MTB3 4.44 ( 2.93 5.14 ) 3.06 ( 2.44 4.78 ) 4.16 ( 2.81 5.39 ) 0.06
MTB5 1.44 ( 1.09 2.57 ) 1.88 ( 0.81 2.64 ) 1.39 ( 0.88 1.96 ) 0.22
MTB1 4.32 ( 3.46 6.14 ) 3.74 ( 3.15 5.21 ) † 4.54 ( 3.50 6.52 ) †† <0.05
CUB 4.98 ( 4.06 7.42 ) 4.36 ( 3.55 6.48 ) † 4.94 ( 3.85 7.39 ) <0.01
NAV 5.56 ( 4.17 5.91 ) 4.19 ( 3.21 6.13 ) † 4.64 ( 3.47 6.10 ) † <0.05
CALM 5.70 ( 4.48 7.13 ) 4.60 ( 3.82 6.90 ) 5.75 ( 4.11 7.01 ) 0.14
CALL 3.86 ( 2.74 5.36 ) 3.38 ( 2.11 4.58 ) 4.56 ( 2.50 6.29 ) †† <0.05
CALP 3.76 ( 3.26 5.24 ) 3.27 ( 2.88 4.71 ) 4.11 ( 3.47 4.98 ) †† <0.05

Table 2 The forward movement of the each makers [mm]. †:difference between without CMFO ††: difference between medial CMFO.

Without CMFO Medial CMFO Full CMFO p-value
MTH1 2.65 ( 2.02 3.75 ) 2.30 ( 1.56 2.97 ) † 2.89 ( 2.31 3.41 ) †† <0.01
MTH5 1.23 ( 1.02 2.04 ) 1.23 ( 1.01 1.62 ) 1.28 ( 1.06 1.91 ) 0.57
MTH2 1.30 ( 1.00 1.73 ) 1.24 ( 0.76 1.46 ) 1.61 ( 1.28 2.03 ) † †† <0.05
MTB3 3.00 ( 2.48 3.99 ) 3.46 ( 2.79 3.98 ) 4.05 ( 3.25 4.97 ) † †† <0.001
MTB5 2.33 ( 1.87 3.15 ) 2.21 ( 1.47 2.92 ) 2.38 ( 1.50 2.70 ) 0.18
MTB1 3.75 ( 3.00 5.18 ) 3.48 ( 2.68 4.44 ) 4.09 ( 3.57 5.02 ) †† <0.01
CUB 3.35 ( 2.44 4.17 ) 4.21 ( 2.16 4.98 ) 4.33 ( 3.34 5.51 ) † †† <0.001
NAV 7.29 ( 5.43 10.21 ) 6.24 ( 4.59 8.65 ) † 6.69 ( 4.91 7.87 ) † <0.05
CALM 3.29 ( 2.43 4.94 ) 2.12 ( 1.49 3.22 ) † 2.18 ( 1.66 3.07 ) † <0.01
CALL 3.12 ( 2.39 4.59 ) 2.53 ( 1.80 3.45 ) 2.70 ( 2.28 4.98 ) 0.63
CALP 9.59 ( 7.59 12.05 ) 7.78 ( 6.82 10.36 ) † 10.02 ( 7.62 12.78 ) † †† <0.05

Table 3 The vertical movement of the each makers [mm]. †:difference between without CMFO ††: difference between medial CMFO.

Discussion

Medial movements of almost all markers with both forms of the CMFO were lower than those without the CMFO, and medial movements of the rear-foot indicated by the CALM and CALP markers with the full CMFO were smaller than those with the medial CMFO. Forward movements of the midfoot with the medial CMFO were significantly lower than those without the CMFO, and vertical movements of the medial foot markers MTH1, NAV and CALM were smaller than those without the CMFO.

Moreover, vertical movement of the forefoot with the full CMFO were larger than those with the medial CMFO or without the CMFO. However, there were slight differences (approximately 1 mm) among the three conditions in the forward and vertical directions. This suggests that the full CMFO which reinforced the lateral longitudinal arch could cause reduced movement of the hindfoot indicated by the calcaneus during forward lunge.  

The lateral longitudinal arch of the foot is composed of the calcaneus, the cuboid and the fifth metatarsal. It is supported by both a static stabilizer in the form of the long plantar ligament and dynamic stabilizers of the peroneus longus, peroneus brevis and abductor digitorum minimi. Keystones of the lateral and the medial longitudinal arch are the cuboid and the navicular, respectively. The lateral longitudinal arch is stiffer than the medial longitudinal arch, and its movements are smaller. Thus, collapse of the lateral longitudinal arch is rare. However, Fukano and Fukabayashi demonstrated that angular changes of the lateral longitudinal arch are greater than those of the medial longitudinal arch during single leg landing [32]. Noh, et al, reported that soccer players with medial tibial stress syndrome have an abnormal structural deformation with a larger decrease in both the medial and the lateral longitudinal arch [3]. We previously reported that the foot kinematics of flat feet with a history of foot pain are important to forward movements of the cuboid [30]. Therefore, we hypothesized that a CMFO which reinforced the lateral longitudinal arch would improve foot kinematics for flat-foot deformity.

Both a full and a medial CMFO could reduce medial movements of the rear foot. Mechanical overloading in flat-foot deformity has been controversial, however there are some reports which describe abnormal rear-foot kinematics (e.g. excessive rear-foot eversion or increased range of rear-foot eversion), abnormal foot and ankle kinetics (e.g. elevated joint moments or abnormal loading forces) and altered physical function (e.g. altered muscle activation and timing or increased energy consumption) [33, 34]. Therefore, both the CMFOs we provided have the effects of controlling foot kinematics in flat-foot deformity.

Mills, et al, investigated the biomechanical effects of three different types of orthoses (hard, medium and soft), and they showed that the least comfortable orthosis caused a greater increase in the control/support of the frontal plane for a mobile midfoot, while the opposite was true for a non-mobile foot [35]. The frontal plane movements consisted of both medial and vertical movements. The medial CMFO decreased the vertical movements of the midfoot more than the full CMFO. Therefore, the medial CMFO is likely to be more uncomfortable than the full CMFO. However, the full CMFO could not decrease the forward movement of the cuboid, nor could it increase the medial movements of the MTB3. Cuboid movements in flat feet of the previous study showed larger forward movements and smaller medial and vertical movements than those of normal feet [30]. This indicated that the foot motion of patients with flat feet was reduced in the frontal plane. Our CMFO could not induce controlled movement of the midfoot in the frontal or sagittal plane. The reason why our full CMFO could not control cuboid motion might be due to the form of the reinforcement part of the lateral longitudinal arch of the CMFO. It was necessary that the reinforced part of the lateral longitudinal arch was expanded in both distal and medial directions. However, the CMFOs we provide demonstrate that changing the hardness of the lateral part of the CMFO could reduce rear-foot motion in the medial direction without any change in form. This might help in the manufacture of CMFOs without subjective assessment such as motion observation.

There are two limitations to this study. Firstly, we did not assess the kinematics during locomotion. There have been some studies which investigated the kinematic effects of a CMFO during shod walking. However, in these studies the researchers also manufactured the shoes, and the rigidity of the shoes also provided some support to the medial side of the foot, affecting the biomechanical effects of the CMFO. Therefore, we investigated the kinematics during the forward lunge. Future studies will investigate effects of the CMFO during locomotion. The second limitation is the definition of flat feet. In our previous study, flat feet were defined as those with more than five points of the FPI-6 values and having a history of pain in the foot and ankle which was related to the flat-foot deformity [30]. However, in this study, none of the subjects had any history of foot pain. It is difficult to define normal feet, because normal feet without a collapsed medial longitudinal arch of the foot might be injured due to overuse syndrome, and there are many feet that did not have any pain, although the medial longitudinal arch of the foot had collapsed. Therefore, it is possible that some subjects diagnosed with flat feet in this study have normal function, although a lower medial longitudinal arch was observed.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP15K16408.

Funding declaration

Japan Society for the Promotion of Science (JSPS); KAKENHI (Multi-year Fund); Grant-in-Aid for Young Scientists (B).

Conflict of interest declaration

No conflict of interest.

References

  1. Kudo S, Hatanaka Y. Forefoot flexibility and medial tibial stress syndrome. J Orthop Surg (Hong Kong). 2015 Dec;23(3):357-60.
  2. Bandholm T, Boysen L, Haugaard S, Zebis MK, Bencke J. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. J Foot Ankle Surg. 2008 Mar-Apr;47(2):89-95.
  3. Noh B, Masunari A, Akiyama K, Fukano M, Fukubayashi T, Miyakawa S. Structural deformation of longitudinal arches during running in soccer players with medial tibial stress syndrome. Eur J Sport Sci. 2015;15(2):173-81.
  4. Duffey MJ, Martin DF, Cannon DW, Craven T, Messier SP. Etiologic factors associated with anterior knee pain in distance runners. Med Sci Sports Exerc. 2000 Nov;32(11):1825-32.
  5. Lorimer AV, Hume PA. Achilles tendon injury risk factors associated with running. Sports Med. 2014 Oct;44(10):1459-72.
  6. McCrory JL, Martin DF, Lowery RB, Cannon DW, Curl WW, Read HM, Jr., et al. Etiologic factors associated with Achilles tendinitis in runners. Med Sci Sports Exerc. 1999 Oct;31(10):1374-81.
  7. Pohl MB, Hamill J, Davis IS. Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners. Clin J Sport Med. 2009 Sep;19(5):372-6.
  8. Wearing SC, Smeathers JE, Urry SR, Hennig EM, Hills AP. The pathomechanics of plantar fasciitis. Sports Med. 2006;36(7):585-611.
  9. Hume P, Hopkins W, Rome K, Maulder P, Coyle G, Nigg B. Effectiveness of foot orthoses for treatment and prevention of lower limb injuries : a review. Sports Med. 2008;38(9):759-79.
  10. Mundermann A, Nigg BM, Humble RN, Stefanyshyn DJ. Foot orthotics affect lower extremity kinematics and kinetics during running. Clin Biomech (Bristol, Avon). 2003 Mar;18(3):254-62.
  11. Collins N, Bisset L, McPoil T, Vicenzino B. Foot orthoses in lower limb overuse conditions: a systematic review and meta-analysis. Foot Ankle Int. 2007 Mar;28(3):396-412.
  12. McMillan A, Payne C. Effect of foot orthoses on lower extremity kinetics during running: a systematic literature review. J Foot Ankle Res. 2008 Nov 17;1(1):13.
  13. Root ML. Development of the functional orthosis. Clin Podiatr Med Surg. 1994 Apr;11(2):183-210.
  14. D’Ambrosia RD. Orthotic devices in running injuries. Clin Sports Med. 1985 Oct;4(4):611-8.
  15. Gross ML, Davlin LB, Evanski PM. Effectiveness of orthotic shoe inserts in the long-distance runner. Am J Sports Med. 1991 Jul-Aug;19(4):409-12.
  16. Saxena A, Haddad J. The effect of foot orthoses on patellofemoral pain syndrome. J Am Podiatr Med Assoc. 2003 Jul-Aug;93(4):264-71.
  17. Vicenzino B, Collins N, Cleland J, McPoil T. A clinical prediction rule for identifying patients with patellofemoral pain who are likely to benefit from foot orthoses: a preliminary determination. Br J Sports Med. 2010 Sep;44(12):862-6.
  18. Bates BT, Osternig LR, Mason B, James LS. Foot orthotic devices to modify selected aspects of lower extremity mechanics. Am J Sports Med. 1979 Nov-Dec;7(6):338-42.
  19. Smith LS, Clarke TE, Hamill CL, Santopietro F. The effects of soft and semi-rigid orthoses upon rearfoot movement in running. J Am Podiatr Med Assoc. 1986 Apr;76(4):227-33.
  20. Novick A, Kelley DL. Position and Movement Changes of the Foot with Orthotic Intervention during the Loading Response of Gait. J Orthop Sports Phys Ther. 1990;11(7):301-12.
  21. Baitch SP, Blake RL, Fineagan PL, Senatore J. Biomechanical analysis of running with 25 degrees inverted orthotic devices. J Am Podiatr Med Assoc. 1991 Dec;81(12):647-52.
  22. Nawoczenski DA, Cook TM, Saltzman CL. The effect of foot orthotics on three-dimensional kinematics of the leg and rearfoot during running. J Orthop Sports Phys Ther. 1995 Jun;21(6):317-27.
  23. Williams DS, 3rd, McClay Davis I, Baitch SP. Effect of inverted orthoses on lower-extremity mechanics in runners. Med Sci Sports Exerc. 2003 Dec;35(12):2060-8.
  24. Branthwaite HR, Payton CJ, Chockalingam N. The effect of simple insoles on three-dimensional foot motion during normal walking. Clin Biomech (Bristol, Avon). 2004 Nov;19(9):972-7.
  25. Kim SH, Ahn SH, Jung GS, Kim JH, Cho YW. The effects of biomechanical foot orthoses on the gait patterns of patients with malalignment syndrome as determined by three dimensional gait analysis. J Phys Ther Sci. 2016 Apr;28(4):1188-93.
  26. MacLean CL, Davis IS, Hamill J. Short- and long-term influences of a custom foot orthotic intervention on lower extremity dynamics. Clin J Sport Med. 2008 Jul;18(4):338-43.
  27. Kido M, Ikoma K, Hara Y, Imai K, Maki M, Ikeda T, et al. Effect of therapeutic insoles on the medial longitudinal arch in patients with flatfoot deformity: a three-dimensional loading computed tomography study. Clin Biomech (Bristol, Avon). 2014 Dec;29(10):1095-8.
  28. Murley GS, Menz HB, Landorf KB. Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res. 2009 Nov 26;2:35.
  29. Landorf KB, Keenan AM. Efficacy of foot orthoses. What does the literature tell us? J Am Podiatr Med Assoc. 2000 Mar;90(3):149-58.
  30. Kudo S, Hatanaka Y. Comparison of the foot kinematics during weight bearing between normal feet and the flat feet. The Foot and Ankle Online Journal. 2016;9(1):2.
  31. Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: the Foot Posture Index. Clin Biomech (Bristol, Avon). 2006 Jan;21(1):89-98.
  32. Fukano M, Fukubayashi T. Motion characteristics of the medial and lateral longitudinal arch during landing. Eur J Appl Physiol. 2009 Feb;105(3):387-92.
  33. Ross M. Use of the tissue stress model as a paradigm for developing an examination and management plan for a patient with plantar fasciitis. J Am Podiatr Med Assoc. 2002 Oct;92(9):499-506.
  34. Dananberg HJ. Sagittal plane biomechanics. American Diabetes Association. J Am Podiatr Med Assoc. 2000 Jan;90(1):47-50.
  35. Mills K, Blanch P, Vicenzino B. Comfort and midfoot mobility rather than orthosis hardness or contouring influence their immediate effects on lower limb function in patients with anterior knee pain. Clin Biomech (Bristol, Avon). 2012 Feb;27(2):202-8.

Winter 2017

Issue 10 (4), 2017


Effects of medial and lateral orthoses on kinetics and tibiocalcaneal kinematics in male runners
by Jonathan Sinclair


The use of unidirectional porous β-tricarcium phosphate in surgery for calcaneal fractures: A report of four cases
by Shigeo Izawa, Toru Funayama, Masashi Iwasashi, Toshinori Tsukanishi, Hiroshi Kumagai, Hiroshi Noguchi, Masashi Yamazaki


Spontaneous double tendon rupture of the ankle
by Jay Kaufman DPM, Alexander Newton DPM, Payel Ghosh DPM, Zachary Ritter DPM


Dual plating technique for comminuted second metatarsal fracture in the diabetic obese patient: A case report
by Sham Persaud DPM, MS, Anthony Chesser DPM, Karl Saltrick DPM


A Complex midtarsal dislocation of the foot following a supination abduction injury: A case report
by Rajesh Kumar Chopra, Narendran Pushpasekaran, Sathyamurthy Palanisamy, Balu Ravi

A Complex midtarsal dislocation of the foot following a supination abduction injury: A case report

by Rajesh Kumar Chopra1, Narendran Pushpasekaran2*, Sathyamurthy Palanisamy2, Balu Ravi2

The Foot and Ankle Online Journal 10 (4): 5

Closed midfoot dislocations are not uncommon injuries. The key to good functional outcomes is stable concentric reduction by understanding the injury pattern and early intervention to maintain the biomechanics of the foot. We report on a 20-year-old male, the presentation of a complex pattern of closed traumatic dislocation of the midfoot, managed by open reduction and internal fixation with Kirschner wires for six weeks. He did not show any evidence of instability or arthritis and had a foot function index of 94% at 14 months. The unique presentation of this midfoot dislocation is the separation of naviculocuneiform and calcaneocuboid joints. An entity that requires reporting in literature as it remains unclassified and to add to the spectrum of injuries caused by the deforming forces of foot.

Keywords: foot injuries, tarsal bones, open reduction, arthritis, foot function index

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0005

1 – M.S.(Ortho), professor, department of orthopaedics, vardhaman mahavir medical college and safdarjang hospital, new delhi, india.
2 – M.S.(Ortho), resident, department of orthopaedics, vardhaman mahavir medical college and safdarjang hospital, new delhi, india.
* – Corresponding author: drnaren247ortho@gmail.com


Closed traumatic dislocations of the midfoot are common injuries in level 1 and 2 trauma care [1]. Apart from the common Lisfranc, Chopart and talonavicular dislocations, swivel-type dislocations of the medial column involving the talus, navicular and cuneiforms, and lateral columns involving the calcaneus and cuboid bones have rarely been reported [2-4]. The proposed injury mechanisms to cause such injuries are dorsiflexion, plantar flexion, abduction and adduction forces or a combination of them [5]. However, involvement of both columns in the form of complete disruption of the naviculocuneiform and calcaneocuboid joints has been infrequently reported in the literature. We report this complex presentation sustained following a supination-abduction force.

Case report

A 20-year-old male, presented to the emergency department after a motor vehicle collision. He sustained a supination-abduction injury in a dorsiflexed foot and developed pain, deformity and swelling in the right foot. The forefoot was depressed and supinated in relation to the hindfoot with mild contusion and skin necrosis over the talonavicular prominence. An abnormal prominence was noted dorsally and medially at the naviculocuneiform joint. (Figures 1A and B). Distal pulses, toe movements and neurological examination were normal. There were no associated injuries in the body. The patient had no medical illness or neuropathies. Radiographs of the foot and ankle showed complete dislocation between the naviculo-cuneiform and calcaneocuboid joints with disruption of the calcaneo-navicular articulation. (Figures 2A and B). This pattern of injury has not been included in any classifications  available in literature.

Figure 1 showing the deformities-step at the naviculocuneiform  junction, forefoot supinated in relation to hindfoot. Pressure necrosis is seen over the navicular site.

Figure 2 Anteroposterior and Oblique views of right foot and ankle showing dislocation of the naviculocuneiform and calcaneocuboid joints (white arrow). Chip fracture of the navicular (black arrow), the site of attachment of calcaneonavicular ligament.

Under general anaesthesia, closed reductions were attempted with the knee flexed and the ankle in 15 degree plantar flexion. The deformity was initially exaggerated and reduction attempted by traction and manipulation opposite to the deforming forces. However, incongruent reduction required an open reduction through Ollier’s approach. The dorsal midtarsal ligament, lateral and plantar cuboideonavicular ligaments were found to be ruptured. Congruent stable reduction was achieved and secured with two 2mm Kirschner wires (K-wires) stabilizing the calcaneocuboid joint and two k wires fixating the medial two cuneiforms and the navicular under image intensifier control (Figures 3A and B). The ruptured ligaments were meticulously repaired. Additional immobilisation by below knee cast and non weight bearing was maintained for 6 weeks. With the removal of the K-wires, physiotherapy, partial weight bearing, medial arch support and controlled ankle motion boot were instituted. The patient had full weight bearing and a plantigrade foot at his 4 month follow-up. The patient had a mild restriction of subtalar motion and restriction of dorsiflexion by 5 degrees. He had no clinical or radiological signs of instability or arthritis and foot function index of 94% at 14 months (Figures 4A and B).

Figure 3 AP and oblique views of the foot and ankle. The navicular, the three cuneiforms and calcaneocuboid joints are concentrically reduced and fixed with K-wires.

Figure 4 Anteroposterior and oblique views of foot and ankle at 14 months follow-up showing normal alignment of arches and no arthritis.

Discussion

Closed midfoot dislocations are not uncommon presentations in level 1 or 2 trauma centers [1]. Apart from the common complex dislocations of Lisfranc and Chopart, isolated and swivel-type fractures and dislocations involving the medial column (talus, navicular and cuneiforms) and lateral column (calcaneus and cuboid) have rarely been reported [2-4]. However, the midfoot dislocations involving the separation of naviculocuneiform and calcaneocuboid joints are rare pattern of injuries infrequently reported in the literature (Table 1).

  Report Patient details Mode of injury Pattern Treatment Follow up Outcomes
1 Q. Choudry et al in 2007 [6]. 34/ male Fall of motorized palate over foot Naviculo- cuneiform subluxation and calcaneocuboid dislocation Closed reduction and immobilization for 6 weeks 15 weeks Good
2 y. chen et al in 2012 [7]. 64/ male Run over by car cuboid, medial and intermediate cuneiform fractures with naviculo-cuneiform and calcaneocuboid dislocation Open reduction and internal fixation of fractures 6 months Good
3 y. chen et al in 2012 [7]. 59/female Car accident left navicular, medial cuneiform and calcaneal fractures with calcaneal–cuboid, navicular–cuneiform and first tarsometatarsal joint dislocations Open reduction and internal fixation 3 months Chronic pain due to calcaneo cuboid instability
4 Our patient 20/male Fall from bike Isolated calcaneal–cuboid, navicular–cuneiform dislocation Open reduction and stabilization 14 months Good

Table 1 Review of reported naviculocuneiform and calcaneocuboid disruptions.

Main and Jowett had extensively studied the mechanisms of midtarsal injuries and proposed the various deforming forces causing the midtarsal fractures and dislocations [5] (Table 2).

Deforming forces Spectrum of midfoot injuries
1 Medial Fracture-sprains, fracture- subluxations or dislocations, swivel dislocations (talonavicular).
2 Longitudinal In plantar flexed foot- navicular fractures.

In dorsiflexed foot- talus fractures, dorsal navicular dislocations.

3 Lateral Fracture-sprains, fracture- subluxations or dislocations, swivel dislocations (talonavicular or naviculocuneiform with intact calcaneo-cuboid).
4 Plantar Fracture-sprains, fracture- subluxations or dislocations (chopart), plantar swivel dislocations.
5 Crush Fractures of mid tarsals.

Table 2 Mechanism of midfoot injuries [5].

Our case presents an unusual and complex pattern of injury in which plantar-abduction force at the midfoot caused the injury path through naviculocuneiform joint and calcaneocuboid joints causing complete dislocation of the three cuneiforms and cuboid articulations. This extends the spectrum of injury pattern caused by abduction deforming forces.

Obtaining concentric and stable reduction is of paramount importance to restore the biomechanics of the foot and prevent debilitating arthritis [8]. The management and prognosis of such complex midtarsal injuries in the literature have not been elaborated, except for a few case reports favoring open reduction and internal fixation [9]. In our case, the patient had good outcomes treated by open reduction and Kirschner wire fixation.

Conclusion

We report this case of traumatic closed dislocation of naviculocuneiform and calcaneocuboid joints following supination abduction deforming forces. Such injuries require further reporting to understand the spectrum of midfoot injuries. Congruent and stable fixation is of paramount importance to maintain proper biomechanics of foot.

References

  1. Hanlon DP. Leg, ankle, and foot injuries: Emerg Med Clin North Am 2010; 28(4):885-905.
  2. Davis CA, Lubowitz J, Thordarson DB. Midtarsal Fracture-Subluxation; Case Report and Review of the Literature: Clin Orthop Relat Res 1993; 292: 264-268.
  3. Dhillon MS, Nagi ON. Total dislocations of the navicular: are they ever isolated injuries?: J Bone Joint Surg [Br] 1999; 81:881-885.
  4. Kollmansberger A, De Boer P. Isolated calcaneocuboid dislocation: a brief report: JBJS [Br] 1970; 71:323-325.
  5. Main BJ, Jowett RL. Injuries of the midtarsal joint: JBJS [Br] 1975; 57:89–97.
  6. Choudry Q, Akhtar S, Kumar R. Calcaneocuboid and naviculocuneiform dislocation: An unusual pattern of injury: J Foot Ankle Surg 2007;13:48–50.
  7. Cheng Y, Yang H, Sun Z, Ni L, Zhang H. A Rare Midfoot Injury Pattern: Navicular–Cuneiform and Calcaneal– Cuboid Fracture–Dislocation: J Int Med Res 2012; 40(2):824-31.
  8. Richter M, Wippermann B, Krettek C, Schratt HE, Huefner T, Thermann H: Fractures and fracture dislocations of the midfoot: occurrence, causes and long-term results. Foot Ankle Int 2001; 22:392–8.
  9. Richter M, Thermann H, Huefner T, Schmidt U, Goesling T, Krettek C: Chopart joint fracture-dislocation: initial open reduction provides better outcome than closed reduction. Foot Ankle Int 2004; 25:340–8.

Dual plating technique for comminuted second metatarsal fracture in the diabetic obese patient: A case report

by Sham Persaud DPM, MS1*, Anthony Chesser DPM1, Karl Saltrick DPM1

The Foot and Ankle Online Journal 10 (4): 4

Metatarsal fractures represent a common fracture type accounting for 35% of all fractures within the foot and 5% of total skeletal fractures annually. Central metatarsal fractures are caused by excess torsional force applied to the bone or direct trauma, with most fractures being attributed to the latter. As with most fractures, minimally displaced fractures of the central metatarsals are amenable to conservative treatment including protected immobilization and RICE therapy. In general, physicians may be accepting of subtle displacement of central metatarsal fractures accepting up to 10 degrees of displacement and 3mm of translation in any direction. When displacement is too great, metatarsal fractures are treated with closed reduction with percutaneous pin fixation or ORIF with pin or single plate fixation. This case report presents a case of a gentleman who suffered from a comminuted metatarsal with a unique fracture pattern that required dual plating technique for proper reduction of the fracture. With this unique fracture type, dual plate technique optimized fixation in order to stabilize an unstable fracture of a second metatarsal in an obese patient with diabetes.

Keywords: metatarsal fracture, stress fracture, diabetes, obesity, metatarsal plate

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0004

1 – West Penn Hospital Foot and Ankle Institute, 4800 Friendship Ave, Pittsburgh, PA 15224
* – Corresponding author: shamjoseph.persaud@ahn.org


Metatarsal fractures represent a common fracture type accounting for 35% of all fractures within the foot and 5% of total skeletal fractures annually [1]. These fractures can be isolated injuries, simultaneous fractures with other metatarsals and foot fractures with ligamentous Lisfranc injuries. They can also be either traumatic or caused by prolonged stress across the bone. Most metatarsal fractures are generally a result of low energy trauma, however high energy crush injuries may occur [2].

Metatarsal fractures occur in multiple locations and are generally divided by location into proximal metaphyseal, diaphyseal/shaft, and head/neck fractures. Proximal fractures are generally associated with Lisfranc injuries. Proximal metatarsal fractures generally remain stable and well aligned secondary to the multiple ligamentous and tendinous structures which stabilize the metatarsals [2-4]. Diaphyseal fractures are generally oblique in nature, but can present in many fracture patterns. These fractures are less stable and should be evaluated for shortening and displacement [5]. The diaphyseal region is the most common site for stress fractures of metatarsals, especially the central metatarsals. Stress fractures, if untreated, can progress to complete transverse or oblique fractures. If displacement is present with diaphyseal fractures, it typically occurs plantarly and laterally [1].

Central metatarsal fractures occur considerably more than first metatarsal fractures. These fractures can affect more than one metatarsal as metatarsal 2-4 generally act as a unit. The literature states that 63% of third metatarsal fractures occur with either a second or fourth metatarsal fracture or 28% with both. Therefore, extensive evaluation of radiographs and possibly the use of other imaging modalities should be used if an isolated metatarsal fracture is identified in metatarsals 2-4 [2].

Central metatarsal fractures are caused by excess torsional force applied to the bone or direct trauma, with most fractures being attributed to the latter [1,2]. Direct trauma includes crush injuries or penetrating injuries to the foot. Spiral or oblique fractures are produced by a twisting injury over a fixed forefoot. Secondary to central metatarsal lack of motion, soft tissue attachments, and stable articulations, these fractures are intrinsically stable. However, when displacement occurs, the central metatarsals are more likely to displace as a unit [1,2].

As with most fractures, minimally displaced fractures of the central metatarsals are amenable to conservative treatment including protected immobilization and RICE therapy. In general, physicians may be accepting of subtle displacement of central metatarsal fractures accepting up to 10 degrees of displacement and 3mm of translation in any direction [6-9]. Plantar displacement is often tolerated the least out of all planes of deformity secondary to excessive plantar pressures. Dorsally displaced fractures can cause excessive strain on adjacent metatarsals leading to transfer plantar lesions and possible adjacent stress fractures. Frontal and transverse plane deformity, generally are well tolerated. However, it has been shown that displacement in the frontal or transverse plane may cause nerve irritation in the metatarsal interspaces, as well as, digital deformity over time [6-9].

The goal of central metatarsal fractures is to achieve anatomic alignment of the metatarsal using stable fixation. This goal can be achieved using both open and closed techniques. In patients with significant comorbidities or vascular compromise achieving extra stable reduction utilizing minimally invasive techniques is idea [1].

Percutaneous Kirschner (K-wire) wire pinning can be performed with a variety of techniques for adequate fixation. The most common method includes intramedullary fixation across the fracture site with use of a large diameter k-wire. Crossing multiple k-wires may also be an acceptable technique for fixating metatarsal fractures [10]. Advantages of k-wire fixation include the ability to maintain vascularity to the fractured bone with minimal dissection and soft tissue disruption. The main disadvantage is the inability for direct visualization and manipulation of the fracture [1].

Open reduction internal fixation (ORIF) is also a viable option for treatment of metatarsal fractures, especially if the fracture is significantly displaced or comminution is present. ORIF technique has the advantage of being able to visualize the fracture site in order to achieve complete anatomic reduction with application of more stable fixation [1]. In terms of fixation, screw fixation is possible for oblique type fractures, however, use of screws for central metatarsal fractures may be challenging. If ORIF technique is used, fixation generally consists of either k-wire fixation, or the use of dorsal plate fixation using mini or small fragment plates and screws. Locking plates may also be beneficial in patients with significant comorbidities or poor bone stock [1].  

Complications are relatively uncommon with either technique. Common complications with fixation of central metatarsal fractures include delayed or non-union, malunion, metatarsalgia, or digital deformity. In general delayed union or malunion complications are secondary to poor blood supply due to dissection techniques or comorbidities, or excess stress secondary to chronic stress fracture and foot deformity [1].

Biomechanical studies have shown that biplane fixation has increased stiffness as well as a decrease chance of hardware failure resulting in a more stable construct. Dayton et al in their biomechanical study showed that biplane plating showed to have superior or equivalent stability in multiplanar orientations as compared to a single plate with interfragmentary screw. However, dual plating is not without its drawbacks; Increased soft tissue dissection, periosteal stripping, theoretical increased operating room time, increased chance of hardware irritation, and increased cost are several disadvantages to dual plating [11].

There have been numerous studies that reference orthogonal/dual plating throughout the body for fracture reduction and stabilization [11-23]. However; there have been no studies for dual plating lesser metatarsals for acute fractures. The purpose of this case study was to provide a scenario where the application of dual plating technique to an unstable lesser metatarsal fracture was warranted.

Case Report

A 52-year-old male presented with acute tenderness to the 2nd metatarsal of the right foot. The pain began approximately one week prior to presenting to us. He denied any injury to his recollection. He initially thought it was a gout flare up secondary to his history of gout flare ups and was prescribed a Medrol dose pack by his PCP which provided no relief. Therefore, the patient went to the emergency room in which radiographs were taken which demonstrated the patient had a displaced mid-diaphyseal fracture to the second metatarsal of the right foot (Figure 1). The patient also stated that within the last week he had also noticed lateral deviation of his second digit which was progressive. This was confirmed via physical exam as a flexible deformity secondary to displacement of the metatarsal fracture site. Physical exam revealed acute swelling and warmth about the midfoot and forefoot of the right foot focused about the second metatarsal. No ecchymosis was present. There was also point tenderness to the second metatarsal with reducible lateral deviation of the second digit at the level of the second metatarsophalangeal joint (MTPJ). With the radiographic displacement present and the patient’s medical history including diabetes, obesity, gout and other associated medical ailments it was decided the best course of action for the patient was to schedule the patient for ORIF of the second metatarsal with capsulotomy and extensor tendon lengthening to the second digit all right foot. Until the surgery the patient was placed in a Jones compression dressing and placed in a CAM walking boot.

Figure 1 Pre-operative radiographs AP, oblique, lateral.

One week after initial presentation, the patient underwent ORIF of the second metatarsal with capsulotomy and extensor tendon lengthening of the second MTPJ of the right foot. Incision placement was made on the dorsal aspect of the second metatarsal beginning at level of the proximal third of the metatarsal extending distally past the second MTPJ. Dissection was carried down to the level of the extensor tendons in which a Z-tenotomy of the extensor digitorum longus tendon, as well as, a complete tenotomy of the extensor digitorum brevis tendon was performed.

At this time, attention was focused to the fracture site. Using standard techniques all bone callus was debrided and the fracture was reduced by joystick technique utilizing a 0.062 K-wire in the capital fragment in order reduce the fracture and pull the metatarsal out to length. Once adequate reduction was achieved, the fracture sites were fixated provisionally with 0.045 K-wires. With further evaluation and thought, it was determined that two plate fixation would be optimal fixation with the current fracture pattern. This was achieved utilizing two 6-hole mini-fragment locking plates oriented obliquely into the bone and staggered for proper locking screw placement (Figure 2). With the two plate construct, both medial and lateral dorsal fragments were fixated to the constant plantar fragment achieving stable fixation.

Figure 2 Intraoperative radiographs AP, oblique, lateral.

After fixating the fracture site, soft tissue balancing for the lateral deviation of the second digit was performed. With reduction of the fracture, the digit deviation had decreased dramatically. The remaining deformity was addressed by performing a lateral capsulotomy at the level of the MTPJ and repairing the extensor longus tendon in an elongated state providing no tension to the digit at the level of the second MTPJ.

Post-operatively the patient remained non-weight bearing in a CAM walking boot for 4 weeks. After 4 weeks, the patient began to progressively bear weight on his right foot in a CAM boot only. After 2 weeks of weight bearing in a CAM boot the patient was transitioned into a tennis shoe comfortably. At that time, serial radiographs were obtained showing adequate consolidation of the fracture site with maintained reduction and position (Figure 3). The patient was able to return to work in full capacity at 8 weeks with no restrictions.  

Figure 3 Post-op clinical pictures and radiographs AP, oblique and lateral.

Discussion

Comminuted fractures of any long bone can be challenging to treat surgically. Though there are many techniques which have been shown to be viable options for such fracture types, dual plating has been shown to provide adequate stability and maintain correction of complex fractures of long bones.

As stated, Dayton et al were able to show that a dual locking plate technique with single cortex locking screws, when compared to single locking plate with interfragmentary screw fixation, showed superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Though this study was used primarily to show stability at fusion sites such as the first tarsometatarsal joint, the results are very applicable to complex fractures of long bones [11].

Dual plating has also been documented as a viable option for fracture fixation within the literature. There have been many studies within orthopedic literature showing the successful use of dual plating technique for fracture ORIF of fractures not within the foot and ankle [18-23]. However, there is also extensive literature is the use of dual plating for complex ankle fractures [12-17].

Kwaadu et al. evaluated the use of dual plate technique for the repair of complex fibular fractures on 25 patients. All 25 patients underwent benign postoperative courses with eight patients having complications all of which were wound complications. No additional operations were performed as a result of this technique. No patient undergoing this technique complained of any hardware irritation, and no hardware removal was required. The average time to radiological healing confirmed via radiograph was 7.5 weeks [12]. Vance et al. reviewed 12 consecutive patients who underwent ORIF of fibular fractures utilizing two 1/3 tubular plates for fixation. All fractures healed both clinically and radiographically. Only one patient required hardware removal. FAOS scores were obtained at a mean of 25.6 months after surgery and showed results of pain (87.6, SD = 9.5), activities of daily living (90.4, SD = 14.5), symptoms (93.3, SD = 9.5), sports (89.5, SD = 18.1), and quality of life (57.4, SD = 21.3) [13].

Our case report demonstrated successful use of dual plating technique for ORIF of a comminuted metatarsal fracture. It is our belief that this technique provides added support which was needed secondary to the fracture pattern presented. Dual plating is warranted in cases when traditional fixation techniques (i.e. K-wire fixation, screw, single plate) will not allow for appropriate reduction or stabilization of the fracture segment. This fixation technique can be another tool in the surgeon’s armamentarium.  While this case study was not the first to incorporate dual plating in fracture cases, it is the first to document dual plate technique for lesser metatarsal fractures.

References

  1. Buddecke D, Polk M, Barp E. Metatarsal fractures. Clin Podiatr Med Surg. 2010 Oct;27(4):601-24.
  2. Petrisor B, Ekrol I, Court-Brown C. The epidemiology of metatarsal fractures. Foot Ankle Int 2006;27:172–5.
  3. Maskill J, Bohay D, Anderson J. First ray injuries. Foot Ankle Clin N Am 2006;11: 143–63.
  4. Pearson J. Fractures of the base of the metatarsals. BMJ 1962;1:1052–4.
  5. Maxwell J. Open or closed treatment of metatarsal fractures: indications and techniques. J Am Podiatry Assoc 1983;73:100–6.
  6. Hansen ST. Foot injuries. In: Browner BD, Jupiter JB, Levine AM, et al, editors. Skeletal trauma. Philadelphia: WB Saunders Company; 1998. p. 2405–38.
  7. Early J. Metatarsal fractures. In: Bucholz R, Heckman J, Rockwood C, et al, editors. Rockwood and green’s fractures in adults. Lippincott, Williams, & Wilkins; 2001. p. 2215.
  8. Shereff M. Complex fractures of the metatarsals. Orthopedics 1990;13(8):875–82.
  9. Armagan O, Shereff M. Injuries to the toes and metatarsals. Orthop Clin North Am 2001;32(1):1–10.
  10. Donahue M, Manoli A. Technical tip: transverse percutaneous pinning of metatarsal neck fractures. Foot Ankle Int 2004;25(6):438–9.
  11. Dayton P, Ferguson J, Hatch D, Santrock R, Scanlan S, Smith B. Comparison of the mechanical characteristics of a universal small biplane plating technique without compression screw and single anatomic plate with compression screw. J Foot Ankle Surg. 2016 May-Jun;55(3):567-71.
  12. Kwaadu KY, Fleming JJ, Lin D. Management of complex fibular fractures: double plating of fibular fractures. J Foot Ankle Surg. 2015 May-Jun;54(3):288-94.
  13. Vance DD, Vosseller JT. Double Plating of Distal Fibula Fractures. Foot Ankle Spec. 2017 Feb 1:1938640017692416.
  14. Singh SK, Wilson MG. A Double Plate Technique for the Management of Difficult Fibula Fractures. Techniques in Foot & Ankle Surgery. 2005:4(4); 235-239.
  15. Savage TJ, Stone PA, McGarry JJ. Internal fixation of distal fibula fractures: a case presentation demonstrating a unique technique for a severely comminuted fibula. J Foot Ankle Surg. 1995 Nov-Dec;34(6):587-92; discussion 596.
  16. Lowe JA, Tejwani N, Yoo BJ, Wolinsky PR. Surgical techniques for complex proximal tibial fractures. J Bone Joint Surg Am. 2011 Aug 17;93(16):1548-59.
  17. Wykes PR, Eccles K, Thennavan B, Barrie JL. Improvement in the treatment of stable ankle fractures: an audit based approach. Injury. 2004 Aug;35(8):799-804.
  18. Helfet DL1, Hotchkiss RN. Internal fixation of the distal humerus: a biomechanical comparison of methods. J Orthop Trauma. 1990;4(3):260-4.
  19. Shin SJ, Sohn HS, Do NH. A clinical comparison of two different double plating methods for intraarticular distal humerus fractures. J Shoulder Elbow Surg. 2010 Jan;19(1):2-9.
  20. Nauth A, McKee MD, Ristevski B, Hall J, Schemitsch EH. Distal humeral fractures in adults. J Bone Joint Surg Am. 2011 Apr 6;93(7):686-700.
  21. Kaipel M, Majewski M, Regazzoni P. Double-plate fixation in lateral clavicle fractures-a new strategy. J Trauma. 2010 Oct;69(4):896-900.
  22. Prasarn ML, Meyers KN, Wilkin G, Wellman DS, Chan DB, Ahn J, Lorich DG, Helfet DL. Dual mini-fragment plating for midshaft clavicle fractures: a clinical and biomechanical investigation. Arch Orthop Trauma Surg. 2015 Dec;135(12):1655-62.
  23. Hirvensalo E, Lindahl J, Kiljunen V. Modified and new approaches for pelvic and acetabular surgery. Injury. 2007 Apr;38(4):431-41.

Spontaneous double tendon rupture of the ankle

by Jay Kaufman DPM1, Alexander Newton DPM2*, Payel Ghosh DPM3, Zachary Ritter DPM4

The Foot and Ankle Online Journal 10 (4): 3

We present an independent case study of a 54-year-old woman that underwent arthroscopic ankle synovectomy with an open Broström lateral ankle stabilization who eventually suffered a spontaneous tendon rupture of both the extensor digitorum longus (EDL) and extensor hallucis longus (EHL) during the post-operative period. Though the postoperative course was initially uneventful, the patient began experiencing pain and swelling about the ankle joint upon transition to full weight bearing three weeks following surgery, but prior to physical therapy implementation. She was subsequently diagnosed with a combined EHL and EDL tendon rupture as well as chronic tendinosis of both tendons. We present this case as a rare complication following arthroscopy directly related to chronic tendinosis, resulting in potentially detrimental implications during postoperative recovery period.

Keywords: spontaneous, extensor tendon rupture, arthroscopy

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0003

1 – Physician; OAA Orthopedic Specialists, Allentown, PA
2 – Resident Physician; Department of Podiatric Surgery, St. Luke’s University Hospital, Allentown, PA
3 – Physician; Syracuse Podiatry, East Syracuse, NY
4 – Physician; Department of Foot and Ankle Surgery, Wound Care, and Podiatry. UPMC Susquehanna Hospital, Williamsport, PA
* – Corresponding author: anewton434@gmail.com


The incidence of tendon rupture following arthroscopic ankle intervention is rare. Spontaneous tendon rupture, with or without intervention, is uncommon. Generally, spontaneous tendon rupture is directly correlated with a combination of mild trauma and chronic degeneration of a tendon. Other contributing factors are systemic diseases, biomechanical abnormalities, fluoroquinolone use, and steroid usage. The Achilles tendon is the most common tendon to experience spontaneous rupture, followed by the patellar tendon, and the Tibialis Anterior (TA).

Specifically, a pes planovalgus foot type can cause excessive recruitment of the muscles required for ankle joint dorsiflexion, the long extensor tendons and the TA. Concomitant factors such as ankle equinus and obesity should be considered during the preoperative examination.

If tendon pathology is expected, a Magnetic Resonance Imaging (MRI) should be obtained. An increase in T2 signal intensity surrounding the tendon is consistent with tenosynovitis. Tendinosis, on the other hand would be delineated by tendon thickening on both T1 and T2 weighted images with increased T2 signal [1]. If the MRI is contraindicated, an ultrasound is a viable option.

Case Presentation

We report the case of a 54-year-old female, who sought a second opinion for continued lateral ankle pain and instability. She had an ankle MRI performed about one year prior to presentation and continued to have nearly daily recurrent left ankle sprains as well as constant aching left ankle pain. Pertinent findings on physical exam were a mild hindfoot varus deformity, a BMI of 40.4, intact manual muscle testing, lateral ankle instability, and tenderness on palpation of the lateral ankle including the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), and the sinus tarsi. After failing prior conservative treatment, surgical intervention was pursued via ankle arthroscopy and lateral ankle stabilization. Ankle arthroscopy was performed uneventfully through a standard anteromedial and anterolateral ankle portal. Postoperatively, she was placed in a posterior splint with the hindfoot placed in slight valgus position.

The postoperative course passed uneventfully until the patient was transitioned from a posterior splint to an ankle brace weight bearing as tolerated one month postoperatively. She was instructed to use assistive devices as necessary and given a prescription for rehabilitative therapy. A few days following weight bearing, the patient noted sudden increased swelling surrounding the ankle joint, along with stiffness and burning within her first three digits. Radiographs and labs to rule out fracture, infectious or inflammatory process were negative. With clinical improvement, she proceeded to complete several weeks of physical therapy with resolution of ankle instability; however, in addition to stiffness and weakness of her lesser toes she began to complain of great toe weakness.

An MRI of the left ankle and left foot was obtained approximately 3.5 months postoperatively. Imaging at the level of the ankle demonstrated a ruptured EDL and EHL retracting proximally above the tibiotalar joint without violation of the anterior joint capsule. MRI at the level of the foot demonstrated tendinosis of the same tendons distal to the level of the ruptures.

Discussion

In 2012, Zengerink et al reviewed complications in ankle arthroscopy. He found neurologic injury to be the most common finding, followed by infection in a review of 1176 patients. Zengerink et al reported no tendon rupture following arthroscopic surgery within their follow up of approximately 7.5 years [2]. To our knowledge, there are only a small collection of prior reported incidences of tendon rupture following arthroscopy of the ankle joint. In 2010 Tuncer et al reported an incident of extensor hallucis longus and extensor digitorum longus insufficiency following radiofrequency ablation during ankle arthroscopy. Of note, intraoperatively both tendons were noted to be intact while the anterior capsule had been affected. However 10 weeks postoperatively, the patient did feel a “pop” and dual tendon rupture was then diagnosed [3].

Single tendon rupture following ankle arthroscopy is a rarity. Rupture of two tendons simultaneously without consideration of iatrogenic injury is improbable. The initial MRI, performed in 2010 prior to any surgical intervention, demonstrated an intact EHL, EDL, and TA. To further solidify our findings of this rare complication, a musculoskeletal radiologist was consulted (Figure 1). On MRI following any surgery, micrometallic debris can be detected in the soft tissues. This causes a susceptibility artifact in the tissues, which appears as multiple small foci of decreased signal on MRI. Figure 2 shows the metallic artifact surrounding the region of repair in the lateral ankle. No artifact is present in the anterior tissues surrounding the ruptured extensor tendons. Lack of metallic artifact as well as no anterior surgical track strongly argues against any kind of surgically induced laceration of the tendons.

Figure 1 MRI of normal ankle anatomy.

Figure 2 Micrometallic debris at site of lateral ankle repair.

Figure 3 demonstrates thickening and increased signal intensity of the long extensor tendons distal to the level of the rupture, consistent with tendinosis. If the tendons had been lacerated during surgery, the cut edges of the tendons would be expected to be sharply demarcated without thickening or increase in signal intensity.

Figure 3 MRI demonstrating absent extensor tendons at rupture site.

Figure 4 MRI demonstrating tendonitis distal to rupture.

Figure 4 demonstrates the lack of the long extensor tendons near the level of the ankle joint. The TA has remained intact. Figures 5 and 6 demonstrate the intact articular surface of the lateral aspect of the joint showing no issues with ingress or egress flow allowing us to further conclude that the articular capsule remains intact.

Figure 5 Intact intra-articular surface of the lateral shoulder of talus and fibula.

Figure 6 Distal tip of fibula and lateral talus.

If iatrogenic causes are ruled out, predisposing factors for tendon rupture must be considered. When an MRI is ordered for evaluation, chronic conditions can be missed as a result of being focused on acute pathologies. In general, chronic tendinosis and extensor tendon pathology are underreported in MRI reports [1]. This patient had multiple predisposing factors for increased strain on her extensor tendons: morbid obesity with a BMI of 40.4, pes planovalgus foot type, equinus strain following immobilization from surgery, and recurrent ankle sprains all likely contributed to rupture in the postoperative period. Additionally, patients bear weight differently on weight-bearing joints following surgery.

In the postoperative period, altered stress across the ankle joint in combination with a period of immobilization likely led to spontaneous rupture, due to the underlying tendinosis now appreciated on the postoperative MRI. In addition to noted EHL and EDL tendinosis, there was noted metallic artifact lateral about the Broström site as would be expected, however, there was no metallic artifact within the anterior soft tissues surrounding the extensor tendons, nor a surgical tract from the ankle joint to the anterior ankle tendons.

Conclusion

Spontaneous lower extremity tendon rupture, while rare, is a real possibility. We do not believe that the rupture of the long extensor tendons was due to iatrogenic injury. Rather, we believe that the combination of chronic tendinosis, immobility following surgery, and changing stresses on an already unhealthy tendon lead to tendon rupture as the patient’s physical therapy regimen was escalated. We believe that prevention of this hinges on proper diagnosis of chronic tendon pathology pre-operatively. When a patient presents preoperatively with gait dysfunction, a thorough evaluation of tendon pathology should not be overlooked prior to any surgical planning.

References

  1. Tsao LY. “Ankle Extensor Tendon Pathology.” www.radsource.us/ankle-extensor-tendon-pathology-2. Radsource MRI Web Clinic. July 2014.
  2. Zegerink M, van Dijk CN. “Complications in Ankle Arthroscopy.” Knee Surgery Sports Traumatology Arthroscopy. 2012 Aug; 20 (8): 1420-31.
  3. Tuncer S, Aksu N, Isiklar U. Delayed rupture of the extensor hallucis longus and extensor digitorum communis tendons after breaching the anterior capsule with a radiofrequency probe during ankle arthroscopy: a case report. Journal of Foot and Ankle Surgery 2010; Sep-Oct; 49(5).

The use of unidirectional porous β-tricarcium phosphate in surgery for calcaneal fractures: A report of four cases

by Shigeo Izawa1*, Toru Funayama2, Masashi Iwasashi1, Toshinori Tsukanishi3, Hiroshi Kumagai2, Hiroshi Noguchi2, Masashi Yamazaki2

The Foot and Ankle Online Journal 10 (4): 2

Affinos@ (Kuraray) is a unidirectional porous β-tricarcium phosphate (UDPTCP). We investigated four patients (four feet) who underwent invasive surgery using UDPTCP to treat calcaneal fractures that were accompanied by a bone defect. The mean age was 63.8±6.4 years old, and the mean observation period was 9.3±3.2 months. We evaluated the changes of UDPTCP over time and correction loss due to its use. In all patients, favorable material absorption and bone substitution were obtained, and their clinical courses were also favorable.

Keywords bone graft , unidirectional porous β-tricarcium phosphate, calcaneus fractures

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0002

1 – Department of Orthopedics, Tsukuba Medical Center Hospital. Tsukuba, Japan
2 – Department of Orthopedics, Faculty of Medicine, University of Tsukuba , Japan
3 – Department of Orthopedics, Kenpoku Medical Center Takahagi Kyodo Hospital, Takahagi, Japan
* – Corresponding author: shigeo.izawa.1109@gmail.com


Bone grafting is often required to treat bone fractures that are accompanied by a bone defect. It is apparent that autogenous bone is optimal for bone grafting, but it has disadvantages due to problems with the procedures and quantity of bone graft. Thus, various types of artificial bones have been developed and clinically applied. Affinos@ (Kuraray) is a unidirectional porous β-tricarcium phosphate (UDPTCP) consisting of a novel porous artificial bone with a porosity of 57%, in which communication holes of 25-300 μm are arranged in one direction. It is characterized by balanced artificial bone resorption and replacement of autologous bone [1]. However, only a few clinical outcomes have been reported using this type of UDPTCP. We reported the outcomes of invasive surgeries using UDPTCP in four patients with calcaneus fractures that were accompanied by a bone defect.

Case presentation

Patients and procedures

The subjects were four patients (four feet) who underwent invasive treatments in one of two facilities between February and September 2015. The mean age was 63.8±6.4 years old, and the mean observation period was 9.3±3.2 months. All injuries occurred due to falling accidents, and the radiographic Essex-Lopresti classification was depression type in three patients and tongue type in one patient (Table 1).

During the surgery, a small incision was made on the lateral side of the calcaneus to reduce the fracture area, and a UDPTCP block (two patients) or granules (two patients) was used to fill the bone defect area, depending on its size. A plate (two patients), Steinmann pin (one patient), or K-wire (one patient) was used for internal fixation. The block was installed so that the communication hole was parallel to the load axis. Partial weight bearing was started after 4-6 weeks of non-weight bearing, and full-body weight bearing was allowed at 9-12 weeks.

Plain radiographs were taken before and immediately after the surgery, as well as 1, 3, and 6 months postoperatively to evaluate changes of the UDPTCP and corrective loss over time. The corrective loss was evaluated using the Bohler angle. In one patient in whom granules were used, plain computed tomography (CT) was performed at 3, 6, and 12 months postoperatively to observe the material absorption and bone neogenesis over time in detail.

Case Age

(yr)

Sex Type of fracture Artificial bone Material used for internal fixation
1 67 M Depression type Ⅱ° Block Plate
2 60 M Depression type Ⅲ° Granule Steinmann pin
3 71 F Tongue type Ⅱ° Granule K-wire
4 57 M Depression  type Ⅱ° Block Plate

Table 1 Radiographic Essex-Lopresti classification of each case.

As seen on a plain radiography image, absorption of the UDPTCP progressed within 3 months postoperatively, the majority of the material was absorbed within 6 months postoperatively, and substitution for the bone progressed. On average, the Bohler angle was 5.9° before the operation, 24.5° immediately after, and 21.3° at the final assessment, demonstrating that there was little correction loss after the surgery (Figure 1). Similar changes over time were observed on plain CT images, and the majority of the material had substituted for bone 1 year postoperatively.

Figure 1 Changes of the Bohler angle over time.

Case 1 (Figure 2, 3)

The patient in Case 1 was a 67-year-old man, and he was injured due to falling from a step ladder during pruning work. He underwent surgery 17 days after the injury. The type of fracture was depression type Ⅱ°. The surgical approach was via a lateral skin incision, and the articular surface was reduced by raising the depressed bone fragment. Part of the UDPTCP block was trimmed to the bone defect part, and three blocks were used to fill the defect. Then, plate fixation was performed.

Partial weight bearing was started at 6 weeks postoperatively, and full-body weight bearing was allowed at 10 weeks. During clinical examination, the Bohler angles were as follows: before the surgery: 0°, immediately postoperatively: 25°, and at the final observation (6 months postoperatively): 22°.

After the surgery, no complications occurred, and, as seen on a plain radiography image, artificial bone was absorbed at 3 months postoperatively. In a plain radiography image that was taken 6 months postoperatively, artificial bone was found to have substituted for the natural bone, and the shadow of the artificial bone almost disappeared (Figure 3).

Figure 2 Plain radiography images, from left: at the time of injury, immediately after the surgery, 3 months postoperatively, and 6 months postoperatively.

Figure 3 Plain radiography images (zoom). Left: 3 months postoperatively; Right: 6 months postoperatively.

Case 2 (Figure 4, 5)

The patient in Case 2 was a 60-year-old man who was injured by falling from a truck loading platform. The patient underwent surgery 6 days after the injury. The type of fracture was depression type Ⅲ°.

During the surgery, the approach was via a skin incision, and the articular surface was reduced by raising the depressed bone fragment. The bone defect area was filled with 2 g of UDPTCP granules. Then, a Steinmann pin was inserted from behind.

Partial weight bearing was started at 6 weeks postoperatively, and full-body weight bearing was allowed at 10 weeks. On clinical examination, the Bohler angles were: before the surgery: 1°, immediately after the surgery: 18°, and at final observation (one year postoperatively): 13°.

No complications occurred following the surgery, and the Steinmann pin was removed 6 weeks postoperatively. As seen on a plain CT image one year after the surgery, the artificial bone was almost substituted for the natural bone, and the trabecular structure was located inside it (Figure 5).

Figure 4 A plain radiography image. Left panel: at the time of injury, middle panel: immediately after the surgery, right panel: 6 months after the surgery.

Figure 5 Plain CT images, from left: immediately after the surgery, 3 months after the surgery, 6 months after the surgery, and one year after the surgery.

Discussion

Calcaneal fractures that occur due to falling accidents often result in crushed cancellous bone and bone defects after reduction. Furthermore, bone atrophy and joint contracture occur following long-term non-weight bearing and fixation, complicating the treatment. A biomechanical study by Inoue et al reported that performing bone grafting to treat a calcaneal fracture is useful to maintain repaired bone fragments [2] .  Takai et al.examined the use of β-TCP artificial bone in 5 patients (5 feet) in older patients (aged ≥ 70 years) with calcaneus fractures, and the mean change of the Bohler angle postoperatively was 1°, demonstrating that the procedure has favorable results [3]. Nakagawa et al found that β-TCP has advantages, because it is easy to penetrate β-TCP with a K-wire after grafting [4]. It can also be applied easily in young adults because it can be completely absorbed. However, in some cases, grafted granular β-TCP leaked into the subtalar joint, and was not absorbed even after 1 year or more; therefore, the authors recommended performing grafting with blocked β-TCP instead of granules in patients with comminuted fractures.

Regarding UDPTCP, Makihara et al. used rabbit bone defect models and reported that UDPTCP leads to superior absorption and substitution for autologous bone [1]. In the present study, favorable absorption and bone substitution were confirmed for both UDPTCP block and granules, and no patient had an infection or foreign body reaction, indicating that the postoperative outcomes of the procedure are favorable. Furthermore, the correction loss was small, even after weight bearing was started, suggesting that UDPTCP had sufficient strength to withstand early weight bearing. Regarding the speed of replacement for autogenous bone, a report5) using Osferion (porosity 75%; Olympus), which is a common β-TCP that is used in Japan, showed that, on average, assimilated shadows of the surrounding bone and trabecular bone formation appeared at 8 weeks postoperatively, and the shadow of absorbed artificial bone disappeared at 8 months postoperatively. In our study, absorption of artificial bone was observed at 3 months postoperatively in all cases, and the artificial bone was absorbed almost completely and replaced with autogenous bone at 6 months postoperatively in the earliest case. Although the substitution speed varies depending on the amount and site of grafted artificial bone and the patient’s age, the substitution speed of the UDPTCP was comparable with that of conventional β-TCP, suggesting that UDPTCP is a useful bone filling material in the treatment of calcaneal fracture.

In conclusion, we performed surgery using UDPTCP in patients with calcaneus fractures. In all cases, favorable material absorption and bone substitution were observed, and the clinical outcomes were favorable.

References

  1. Takeshi M. The balance between bone formation and material resorption in unidirectional porous β-tricalcium phosphate implanted in a rabbit tibia. Key Engineering Materials, 696:177-182, 2016.
  2. Nozomu I. The usefulness of combining bone grafts in open surgery of calcaneus fracture. Fracture, 12:173-177, 1990.
  3. Hirokazu T. Open reduction and internal fixation with artificial bone grafts for calcaneus fractures in elderly people. Journal of Orthopedics & Traumatology, 61:765-768, 2012.
  4. Yusuke N. Treatment outcomes of open reduction and fixation using granularβ-TCP by lateral scalpel for intra articular calcaneus fractures. Fracture, 34:446-450, 2012.
  5. Naohiro T. The usefulness of theβ-TCP as bone filling material. Journal of Orthopedics & Traumatology, 63:875-877, 2014.

Effects of medial and lateral orthoses on kinetics and tibiocalcaneal kinematics in male runners

by Jonathan Sinclair1*

The Foot and Ankle Online Journal 10 (4): 1

Background: The aim of the current investigation was to examine the effects of foot orthotic devices with a 5° medial and lateral wedge on kinetics and tibiocalcaneal kinematics during the stance phase of running.
Material and methods: Twelve male participants ran over a force platform at 4.0 m/s in three different conditions (5° medial orthotic, 5° lateral orthotic and no-orthotic). Tibiocalcaneal kinematics were collected using an 8 camera motion capture system and axial tibial accelerations were obtained via an accelerometer mounted to the distal tibia. Biomechanical differences between orthotic conditions were examined using one-way repeated measures of analysis of variance (ANOVA).
Results: The results showed that no differences (P>0.05) in kinetics/tibial accelerations were evident between orthotic conditions. However, it was revealed that the medial orthotic significantly (P<0.05) reduced peak ankle eversion and relative tibial internal rotation range of motion (-10.75 & 4.98°) in relation to the lateral (-14.11 & 6.14°) and no-orthotic (-12.37 & 7.47°) conditions.
Conclusions: The findings from this study indicate, therefore, that medial orthoses may be effective in attenuating tibiocalcaneal kinematic risk factors linked to the etiology of chronic pathologies in runners.

Keywords: running, biomechanics, orthoses, kinetics, kinematics

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0001

1 – Center for Applied Sport Exercise and Nutritional Sciences, School of Sport and Wellbeing, Faculty of Health & Wellbeing, University of Central Lancashire, Preston, Lancashire, PR1 2HE.
* – Corresponding author: jksinclair@uclan.ac.uk


Distance running is associated with a significant number of physiological and psychological benefits [1]. However, epidemiological analyses have demonstrated that pathologies of a chronic nature are extremely common in both recreational and competitive runners [2] and as many as 80% of runners will experience a chronic injury as a consequence of their training over a one-year period [2].

Given the high incidence of chronic pathologies in runners, a range of strategies have been investigated and implemented in clinical research in an attempt to mitigate the risk of injury in runners. Foot orthoses are very popular devices that are used extensively by runners [3]. It has been proposed that foot orthoses may be able to attenuate the parameters linked to the etiology of injury in runners, thus they have been cited as a mechanism by which injuries can be prophylactically avoided and also retrospectively treated [4]. The majority of research investigating the biomechanical effects of foot orthoses during running has examined either impact loading or rearfoot eversion parameters which have been linked to the etiology of running injuries. Sinclair et al, [5] showed that an off the shelf orthotic device significantly reduced vertical rates of loading and axial tibial accelerations, but did not alter the magnitude of rearfoot eversion. Butler et al, [6] examined three-dimensional (3D) kinematic/ kinetic data alongside axial tibial accelerations during running, using dual-purpose and a rigid orthoses. Their findings revealed that none of the experimental parameters were differed significantly between the different orthotic conditions.  Laughton et al, [7] showed that foot orthoses significantly reduced the loading rate of the vertical ground reaction force but did not significantly influence rearfoot eversion parameters. Dixon, [8] examined the influence of off the shelf foot orthoses placed inside an military boot on kinetic and 3D kinematic parameters during running. The findings from this investigation revealed that the orthotic device significantly reduced the vertical rate of loading, but no alterations in ankle eversion were reported.

Further to this, because the mechanics of the foot alter the kinetics/kinematics of the proximal lower extremity joints, biomechanical control of the foot with in-shoe orthotic wedges has wide-ranging applications for the treatment of a variety chronic lower extremity conditions. Different combinations of wedges or posts have therefore been used in clinical practice/ research to treat a multitude of chronic pathologies [9]. Both valgus (lateral) and varus (medial) orthoses have been proposed as potentially important low-cost devices for the conservative management of chronic pathologies [10].

Lateral orthoses are utilized extensively in order to reduce the loads experienced by the medial tibiofemoral compartment [10]. Lateral orthoses cause the center of pressure to shift medially thereby moving the medial-lateral ground reaction force vector closer to the knee joint center [11]. This serves to reduce the magnitude of the knee adduction moment which is indicative of compressive loading of the medial aspect of the tibiofemoral joint and its progressive degeneration [12]. Kakihana et al, investigated the biomechanical effects of lateral wedge orthoses on knee joint moments during gait in elderly participants with and without knee osteoarthritis [13]. The lateral wedge significantly reduced the knee adduction moment in both groups when compared with no wedge. Butler et al, examined the effects of a laterally wedged foot orthosis on knee mechanics in patients with medial knee osteoarthritis [14]. The laterally wedged orthotic device significantly reduced the peak adduction moment and also the knee adduction excursion from heel strike to peak adduction compared to the non-wedged device. Kakihana et al, examined the kinematic and kinetic effects of a lateral wedge insole on knee joint mechanics during gait in healthy adults [15]. The wedged insole significantly reduced the knee adduction moment during gait in comparison to the no-wedge condition, although no changes in knee kinematics were evident.

The influence of medially oriented foot orthoses has also been frequently explored in biomechanical literature. Boldt et al, examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome [16]. The findings from this study showed that the peak knee adduction moment increased and hip adduction excursion decreased significantly when wearing medially wedged foot orthoses. Sinclair et al.,  explored the effects of medial foot orthoses on patellofemoral stress during the stance phase of running using a musculoskeletal modelling approach [17]. Their findings showed that medial foot orthoses significantly reduced peak patellofemoral stress loading at this joint during running.

Although the effects of medial/lateral foot orthoses have been explored previously, they have habitually been examined during walking in pathological patients and thus their potential prophylactic effects on the kinetics and tibiocalcaneal kinematics of running have yet to be examined. Therefore, the aim of the current investigation was to examine the effects of foot orthotic devices with a 5° medial and lateral wedge on kinetics and tibiocalcaneal kinematics the during the stance phase of running. A clinical investigation of this nature may provide further insight into the potential efficacy of wedged foot orthoses for the prevention of chronic running injuries.

Methods

Participants

Twelve male runners (age 26.23 ± 5.76 years, height 1.79 ± 0.11 cm and body mass 73.22 ± 6.87 kg) volunteered to take part in this study. All runners were free from musculoskeletal pathology at the time of data collection and were not currently taking any medications. The participants provided written informed consent in accordance with the principles outlined in the Declaration of Helsinki. The procedure utilized for this investigation was approved by the University of Central Lancashire, Science, Technology, Engineering and Mathematics, ethical committee.

Orthoses

Commercially available orthotics (Slimflex Simple, High Density, Full Length, Algeos UK) were examined in the current investigation. The orthoses were made from Ethylene-vinyl acetate and had a shore A rating of 65. The orthoses were able to be modified to either a 5˚ varus or valgus configuration which spanned the full length of the device. The order that participants ran in each orthotic condition was counterbalanced.

Procedure

Participants completed five running trials at 4.0 m/s ± 5%. The participants struck an embedded piezoelectric force platform (Kistler Instruments, Model 9281CA) sampling at 1000 Hz with their right foot. Running velocity was monitored using infrared timing gates (SmartSpeed Ltd UK). The stance phase of the running cycle was delineated as the time over which > 20 N vertical force was applied to the force platform. Kinematic information was collected using an eight-camera optoelectric motion capture system with a capture frequency of 250 Hz. Synchronized kinematic and ground reaction force data were obtained using Qualisys track manager software (Qualisys Medical AB, Goteburg, Sweden).

The calibrated anatomical systems technique (CAST) was utilized to quantify tibiocalcaneal kinematics (18). To define the anatomical frames of the right foot, and shank, retroreflective markers were positioned onto the calcaneus, first and fifth metatarsal heads, medial and lateral malleoli, medial and lateral epicondyle of the femur. A carbon fiber tracking cluster was attached to the shank segment. The foot was tracked using the calcaneus, and first and fifth metatarsal markers. Static calibration trials were obtained with the participant in the anatomical position in order for the positions of the anatomical markers to be referenced in relation to the tracking clusters/markers.

Tibial accelerations were measured using an accelerometer (Biometrics ACL 300, Units 25-26 Nine Mile Point Ind. Est. Cwmfelinfach, Gwent United Kingdom) sampling at 1000 Hz. The device was attached to the tibia 0.08 m above the medial malleolus in alignment with its longitudinal axis (19). Strong adhesive tape was placed over the device and the lower leg to prevent artifact in the acceleration signal.

Processing

The running trials were digitized using Qualisys Track Manager (Qualysis, Sweden) and then exported as C3D files. Kinematic parameters were quantified using Visual 3-D software (C-Motion, USA) after the marker data was smoothed using a low-pass Butterworth 4th order zero-lag filter at a cutoff frequency of 12 Hz. Three-dimensional kinematic parameters were calculated using an XYZ cardan sequence of rotations where X represents the sagittal plane, Y represents the coronal plane and Z represents the transverse plane rotations (Sinclair et al., 2013). Trials were normalized to 100% of the stance phase then processed and averaged. In accordance with previous studies, the foot segment coordinate system was referenced to the tibial segment for ankle kinematics, whilst tibial internal rotation (TIR) was measured as a function of the tibial coordinate system in relation to the foot coordinate axes [21]. The 3-D kinematic tibiocalcaneal measures which were extracted for statistical analysis were: (1) angle at foot strike, (2) peak angle during stance and (3) relative range of motion (ROM) from footstrike to peak angle.

The tibial acceleration signal was filtered using a 60 Hz Butterworth zero lag 4th order low pass filter to prevent any resonance effects on the acceleration signal. Peak tibial acceleration (g) was defined as the highest positive axial acceleration peak measured during the stance phase. Average tibial acceleration slope (g/s) was quantified by dividing peak tibial acceleration by the time taken from footstrike to peak tibial acceleration and instantaneous tibial acceleration slope (g/s) was quantified as the maximum increase in acceleration between frequency intervals. From the force platform all parameters were normalized by dividing the net values by body weight. Instantaneous loading rate (BW/s) was calculated as the maximum increase in vertical force between adjacent data points.

Statistical analyses

Means, standard deviations and 95 % confidence intervals were calculated for each outcome measure for all orthotic conditions. Differences in kinetic and tibiocalcaneal kinematic parameters between orthoses were examined using one-way repeated measures ANOVAs, with significance accepted at the P≤0.05 level. Effect sizes were calculated using partial eta2 (pη2). Post-hoc pairwise comparisons were conducted on all significant main effects. The data was screened for normality using a Shapiro-Wilk which confirmed that the normality assumption was met. All statistical actions were conducted using SPSS v23.0 (SPSS Inc., Chicago, USA).

Results

Tables 1-3 and Figure 1 present differences in kinetics and tibiocalcaneal kinematics as a function of the different orthoses. The results indicate that the experimental orthoses significantly affected orthoses tibiocalcaneal kinematic parameters.

Medial Lateral No-orthotic
Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper)
Coronal plane (+ = inversion & – = eversion)
 Angle at footstrike (°) -3.98 5.65 -7.57 -0.39 -3.77 5.64 -7.35 -0.19 -0.66 5.91 -4.41 3.09
 Peak eversion (°) -10.75 5.7 -14.38 -7.13 -14.11 6.48 -18.22 -9.99 -12.37 5.43 -15.82 -8.92
 Relative ROM (°) 6.77 2.78 5.00 8.54 10.34 3.44 8.15 12.53 11.71 3.26 9.64 13.78
Transverse plane (+ = external & – = internal)
 Angle at footstrike (°) -11.78 2.72 -13.51 -10.05 -15.01 2.81 -16.80 -13.22 -14.41 2.97 -16.29 -12.52
 Peak rotation (°) -6.80 3.10 -8.78 -4.83 -5.6 3.94 -8.10 -3.09 -5.05 3.33 -7.17 -2.93
 Relative ROM (°) 4.97 0.86 4.43 5.52 9.41 1.33 8.56 10.26 9.35 1.44 8.44 10.27

Table 1 Ankle kinematics (mean, SD & 95% CI) in the coronal and transverse planes as a function of the different orthotic conditions.

Medial Lateral No-orthotic
Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper)
Transverse plane (+ =  internal & – =external)
 Angle at footstrike (°) 8.57 3.16 6.56 10.57 9.74 4.01 7.20 12.29 6.51 3.98 3.98 9.04
 Peak TIR (°) 13.54 4.28 10.82 16.27 15.89 5.65 12.30 19.48 13.98 4.58 11.07 16.89
 Relative ROM (°) 4.98 2.68 3.28 6.68 6.14 3.54 3.89 8.39 7.47 3.75 5.09 9.85

Table 2 Tibial internal rotation parameters (mean, SD & 95% CI) as a function of the different orthotic conditions.

Medial Lateral No-orthotic
Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper)
Peak tibial acceleration (g) 9.83 4.50 6.98 12.69 9.97 4.88 6.87 13.07 9.41 4.76 6.38 12.44
Average tibial acceleration slope (g/s) 362.73 196.31 238.01 487.46 367.37 219.63 227.83 506.91 369.52 257.85 205.69 533.35
Instantaneous tibial acceleration slope (g/s) 866.20 459.40 574.31 1158.09 867.71 554.16 515.61 1219.81 776.85 529.86 440.20 1113.51
Instantaneous load rate (BW/s) 156.17 58.72 118.86 193.48 161.77 71.57 116.30 207.25 134.49 44.62 106.14 162.84

Table 3 Kinetic and tibial acceleration parameters (mean, SD & 95% CI) as a function of the different orthotic conditions.

Figure 1 Tibiocalcaneal kinematics as a function of the different orthotic conditions; a= ankle coronal plane angle, b= ankle transverse plane angle & c = tibial internal rotation, (black = lateral, dash = medial & grey = no-orthotic), (IN = inversion, EXT = external & INT = internal).

Kinetics and tibial accelerations

No significant (P>0.05) differences in kinetics/tibial acceleration parameters were observed between orthotic conditions.

Tibiocalcaneal kinematics

In the coronal plane a significant main effect (F (2, 22) = 25.58, P<0.05, pη2 = 0.70) was found for the magnitude of peak eversion. Post-hoc pairwise comparisons showed that peak eversion was significantly larger in the lateral in relation to the medial (P=0.0000007) and no-orthotic (P=0.01) conditions. In addition, it was also revealed that peak eversion was significantly greater in the no-orthotic (P=0.008) in comparison to the medial orthotic condition. In addition, a significant main effect (F (2, 22) = 25.58, P<0.05, pη2 = 0.74) was noted for relative eversion ROM. Post-hoc pairwise comparisons showed that relative eversion ROM was significantly larger in the lateral (P=0.0000006) and no-orthotic (P=0.00001) in relation to the medial condition.

In the transverse plane a significant main effect (F (2, 22) = 116.11, P<0.05, pη2 = 0.91) was noted for relative transverse plane ankle ROM. Post-hoc pairwise comparisons showed that relative transverse plane ankle ROM was significantly larger in the lateral (P=0.0000001) and no-orthotic (P=0.0000008) in relation to the medial condition.

In addition, a significant main effect (F (2, 22) = 5.99, P<0.05, pη2 = 0.36) was found for the magnitude of peak TIR. Post-hoc pairwise comparisons showed that peak TIR was significantly larger in the lateral in relation to the medial (P=0.007) and no-orthotic (P=0.025) conditions. Finally, a significant main effect (F (2, 22) = 7.55, P<0.05, pη2 = 0.41) was noted for relative TIR ROM. Post-hoc pairwise comparisons showed that relative TIR ROM was significantly larger in the lateral (P=0.04) and no-orthotic (P=0.007) in relation to the medial condition.

Discussion

The aim of the current investigation was to examine the effects of foot orthotic devices with a 5° medial and lateral wedge on kinetics and tibiocalcaneal kinematics the during the stance phase of running. This is, to the authors’ knowledge, the first investigation to concurrently examine the influence of different orthotic wedge configurations on the biomechanics of running. An investigation of this nature may, therefore, provide further insight into the potential prophylactic efficacy of wedged foot orthoses for the prevention of chronic running injuries.

The current study importantly confirmed that no significant differences in impact loading or axial tibial accelerations were evident as a function of the experimental orthotic conditions. This observation opposes those of Sinclair et al., Laughton et al. and Dixon, who demonstrated that foot orthoses significantly reduced the magnitude of axial impact loading during the stance phase of running [5,7,8]. However, the findings are in agreement with those noted by Butler et al,  who similarly observed that the magnitude of axial impact loading did not differ significantly whilst wearing rigid orthoses [6]. Although not all of the aforementioned investigations have published hardness ratings, at a shore A grade of 65 it is likely that the orthoses examined in the current explanation were more rigid than those utilized by Sinclair et al., Laughton et al. and Dixon [5,7,8]. It is proposed that the divergence between investigations relates to differences in hardness characteristics of the experimental orthoses. The magnitude of impact loading is governed by the rate of change in momentum of the decelerating limb as the foot strikes the ground [22]; as such, it appears that the orthoses examined in this analysis were not sufficiently compliant to provide any reduction in impact loading.

Of further importance to the current investigation is that the medial orthoses significantly reduced eversion and TIR parameters in relation to the lateral and no-orthotic conditions. It is likely that this observation relates to the mechanical properties of the medial wedge which is designed specifically to rotate the foot segment into a more inverted position. This finding has potential clinical significance as excessive rearfoot eversion and associated TIR parameters are implicated in the etiology of a number of overuse injuries such as tibial stress syndrome, plantar fasciitis, patellofemoral syndrome and iliotibial band syndrome [23-25]. This observation therefore suggests that medial orthoses may be important for the prophylactic attenuation of chronic running related to excessive eversion/ TIR.

The findings from the current study importantly show that whilst lateral orthoses are effective in attenuating pain symptoms [9] and reducing the magnitude of the external knee adduction moment [13-15] in patients with medial compartment tibiofemoral osteoarthritis, they may concurrently place runners at risk from chronic pathologies distinct from the medial aspect of the tibiofemoral joint. It appears based on the findings from the current investigation that caution should be exercised when prescribing lateral wedge orthoses without a thorough assessment of the runners’ individual characteristics.  

A limitation, in relation to the current investigation, is that only the acute effects of the wedged insoles were examined. Therefore, although the medial orthoses appear to prophylactically attenuate tibiocalcaneal risk factors linked to the etiology of injuries, it is currently unknown whether this will prevent or delay the initiation of injury symptoms. Furthermore, the duration over which the orthoses would need to be utilized in order to mediate a clinically meaningful change in patients is also not currently known. A longitudinal examination of medial/lateral orthoses in runners would therefore be of practical and clinical relevance in the future. A further potential limitation is that only male runners were examined as part of the current investigation. Females are known to exhibit distinct tibiocalcaneal kinematics when compared to male recreational runners, with females being associated with significantly greater eversion and TIR parameters compared to males [26]. Furthermore, females are renowned for being at increased risk from tibiofemoral joint degeneration in comparison to males [27], and experimental findings have shown that degeneration may also be more prominent at different anatomical aspects of the knee in females in relation to males [28]. This suggests that the requirements of females, in terms of wedged orthotic intervention, may differ from those of male runners, thus it would be prudent for future biomechanical investigations to repeat the current study using a female sample.

In conclusion, despite the fact that the biomechanical effects of wedged foot orthoses have been examined previously, current knowledge with regards to the effects of medial and lateral orthoses on the kinetics and tibiocalcaneal kinematics of running have yet to be explored. This study adds to the current literature in the field of biomechanics by giving a comprehensive comparative examination of kinetic and tibiocalcaneal kinematic parameters during the stance phase of running whilst wearing medial and lateral orthoses. The current investigation importantly showed that medial orthoses significantly attenuated eversion and TIR parameters in relation to the lateral and no-orthotic conditions. The findings from this study indicate therefore that medial orthoses may be effective in attenuating tibiocalcaneal kinematic risk factors linked to the etiology of chronic pathologies in runners.

References

  1. Lee, D.C., Pate, R.R., Lavie, C.J., Sui, X., Church, T.S., Blair S.N. (2014). Leisure-time running reduces all-cause and cardiovascular mortality risk. Journal of the American College of Cardiology. 64, 472-481.
  2. van Gent, B.R., Siem, D.D., van Middelkoop, M., van Os, T.A., Bierma-Zeinstra, S.S., Koes, B.B. (2007). Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. British Journal of Sports Medicine. 41, 469-480.
  3. McMillan, A., Payne, C. (2008). Effect of foot orthoses on lower extremity kinetics during running: a systematic literature review. Journal of Foot and Ankle Research. 13, 1-13.
  4. Mills, K., Blanch, P., Chapman, A. R., McPoil, T. G., Vicenzino, B. (2010). Foot orthoses and gait: a systematic review and meta-analysis of literature pertaining to potential mechanisms. British Journal of Sports Medicine, 44, 1035-1046.
  5. Sinclair, J., Isherwood, J., Taylor, P.J. (2014). Effects of foot orthoses on kinetics and tibiocalcaneal kinematics in recreational runners. Foot and Ankle Online Journal, 7, 3-11.
  6. Butler, R. J., Davis, I. M., Laughton, C. M., Hughes, M. (2003). Dual-function foot orthosis: effect on shock and control of rearfoot motion. Foot & ankle international, 24, 410-414.
  7. Laughton, C. A., Davis, I. M., Hamill, J. (2003). Effect of strike pattern and orthotic intervention on tibial shock during running. Journal of Applied Biomechanics, 19, 153-168.
  8. Dixon, S.J. (2007). Influence of a commercially available orthotic device on rearfoot eversion and vertical ground reaction force when running in military footwear. Military medicine, 172, 446-450.
  9. Parkes, M. J., Maricar, N., Lunt, M., LaValley, M. P., Jones, R. K., Segal, N. A., Felson, D. T. (2013). Lateral wedge insoles as a conservative treatment for pain in patients with medial knee osteoarthritis: a meta-analysis. JAMA, 310, 722-730.
  10. Reilly, K. A., Barker, K. L., Shamley, D. (2006). A systematic review of lateral wedge orthotics-how useful are they in the management of medial compartment osteoarthritis?. The Knee, 13, 177-183.
  11. Rafiaee, M., Karimi, M. T. (2012). The effects of various kinds of lateral wedge insoles on performance of individuals with knee joint osteoarthritis. International Journal of Preventive Medicine, 3, 693-698.
  12. Birmingham, T.B., Hunt, M.A., Jones, I.C., Jenkyn, T.R., Giffin, J.R. (2007). Test–retest reliability of the peak knee adduction moment during walking in patients with medial compartment knee osteoarthritis. Arthritis Care & Research. 57, 1012-1017.
  13. Kakihana, W., Torii, S., Akai, M., Nakazawa, K., Fukano, M., Naito, K. (2005). Effect of a lateral wedge on joint moments during gait in subjects with recurrent ankle sprain. American Journal of Physical Medicine & Rehabilitation, 84, 858-864.
  14. Butler, R. J., Marchesi, S., Royer, T., Davis, I. S. (2007). The effect of a subject‐specific amount of lateral wedge on knee mechanics in patients with medial knee osteoarthritis. Journal of Orthopaedic Research, 25, 1121-1127.
  15. Kakihana, W., Akai, M., Yamasaki, N., Takashima, T., Nakazawa, K. (2004). Changes of joint moments in the gait of normal subjects wearing laterally wedged insoles. American Journal of Physical Medicine & Rehabilitation, 83, 273-278.
  16. Boldt, A.R., Willson, J.D., Barrios, J.A., Kernozek, T.W. (2013). Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome. Journal of Applied Biomechanics. 29, 68-77.
  17. Sinclair, J., Vincent, H., Selfe, J., Atkins, S., Taylor, P.J., Richards, J. (2015). Effects of foot orthoses on patellofemoral load in recreational runners. Foot and Ankle Online Journal, 8, 5-12.
  18. Cappozzo, A., Catani, F., Leardini, A., Benedeti, M.G., Della, C.U. (1995). Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clinical Biomechanics, 10, 171-178.
  19. Sinclair, J., Bottoms, L., Taylor, K., Greenhalgh, A. (2010). Tibial shock measured during the fencing lunge: the influence of footwear. Sports Biomechanics, 9, 65-71.
  20. Sinclair, J., Taylor, P.J., Edmundson, C.J., Brooks, D., Hobbs, S.J. (2013). Influence of the helical and six available Cardan sequences on 3D ankle joint kinematic parameters. Sports Biomechanics, 11, 430-437.
  21. Eslami, M., Begon, M., Farahpour, N., Allard, P. (200). Forefoot–rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running. Clinical Biomechanics, 22, 74-80.
  22. Whittle, M.W. (1999). Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait & posture, 10, 264-267.
  23. Viitasalo, J.T., Kvist, M. (1983). Some biomechanical aspects of the foot and ankle in athletes with and without shin splints. The American Journal of Sports Medicine, 11, 125-130.
  24. Lee, S.Y., Hertel, J., Lee, S.C. (2010). Rearfoot eversion has indirect effects on plantar fascia tension by changing the amount of arch collapse. The Foot, 20, 64-70.
  25. Barton, C. J., Levinger, P., Menz, H. B., Webster, K. E. (2009). Kinematic gait characteristics associated with patellofemoral pain syndrome: a systematic review. Gait & posture, 30, 405-416.
  26. Sinclair, J., Taylor, P. J. (2014). Sex differences in tibiocalcaneal kinematics. Human Movement, 15, 105-109.
  27. Hame, S.L., Alexander, R.A. (2013). Knee osteoarthritis in women. Current Reviews in Musculoskeletal Medicine. 6, 182-187.
  28. Hanna, F.S., Teichtahl, A.J., Wluka, A.E., Wang, Y., Urquhart, D.M., English, D.R., Cicuttini, F.M. (2009). Women have increased rates of cartilage loss and progression of cartilage defects at the knee than men: a gender study of adults without clinical knee osteoarthritis. Menopause. 16, 666-670.

Fall 2017


Issue 10 (3), 2017


Foot anthropometrics in individuals with diabetes compared with the general Swedish population: Implications for shoe design
by Ulla Hellstrand Tang , Jacqueline Siegenthaler, Kerstin Hagberg, Jon Karlsson, Roy Tranberg


Osteochondromas of the subtalar joint: A case study
by Christopher Gaunder MD, Brandon McKinney DO, Joseph Alderete MD, Thomas Dowd MD


Divergent Lisfranc injury with dislocation of great toe interphalangeal joint: A rare case report
by Dr. Ganesh Singh Dharmshaktu, Dr. Binit Singh


Charcot foot management using MASS posture foot orthotics: A case study
by Edward S. Glaser DPM; David Fleming BS


Surgical treatment of a large plexiform neurofibroma of the lower extremity
by Jacob Jensen, David Shofler, Della Bennett


Staged surgical intervention in the treatment of septic ankle arthritis with autologous circular pillar fibula augmentation: A case report
by Sham J. Persaud DPM, MS; Colin Zdenek DPM; Alan R. Catanzariti DPM


Staged surgical intervention in the treatment of septic ankle arthritis with autologous circular pillar fibula augmentation: A case report

by Sham J. Persaud DPM, MS1*; Colin Zdenek DPM2; Alan R. Catanzariti DPM3

The Foot and Ankle Online Journal 10 (3): 6

Surgical management of chronic septic arthritis of the ankle joint is a challenging problem. Failure to initiate appropriate antibiotic therapy and perform incision and drainage within the first 24 to 48 hours of onset can result in subchondral bone loss and permanent joint dysfunction. Patients with chronic infection are not only at risk for loss of joint function, but also limb loss. This case report presents a staged procedure for limb salvage of patients with chronic septic arthritis of the ankle joint. Our technique includes use of both internal and external fixation, along with infection control and autologous pillar grafts. Though our case study is limited, the results are comparable to previous studies. This approach appears to be reasonable for limb salvage in end-stage degenerative joint disease following septic ankle arthritis.

Keywords: Septic arthritis, ankle, pillar graft, internal fixation, external fixation

ISSN 1941-6806
doi: 10.3827/faoj.2017.1003.0006

1 – West Penn Hospital, The Foot and Ankle Institute, Pittsburgh, PA 15224
2 – Silicon Valley Reconstruction Foot and Ankle Fellow, Palo Alta Medical Foundation, Mountain View, CA 94040
3 – Director of the Residency Training Program, West Penn Hospital, The Foot and Ankle Institute, Pittsburgh, PA 15224
* – Corresponding author: Sham Persaud, shamjoseph.persaud@ahn.org


Surgical management of chronic septic arthritis of the ankle joint is a challenging problem. Failure to initiate appropriate antibiotic therapy and perform incision and drainage within the first 24 to 48 hours of onset can result in subchondral bone loss and permanent joint dysfunction. Joint function after Staphylococcus aureus (S. aureus) septic arthritis is generally lost 25-50% of the time [1-4]. The mortality rate for septic arthritis has been reported as high as of 10-15% [1-2, 5-8].

Internal ankle arthrodesis techniques are reported to have between 88% to 100% primary fusion rates in patients with aseptic arthritis [9-12]. However the fusion rate for ankle arthrodesis in the setting of sepsis is roughly 71% to 93% [13-19].

Surgical management of septic arthritis requires debridement of all non-viable infected soft tissue and bone in order to eradicate infection [14-15, 20]. In addition to debridement, the use of local antibiotic delivery through polymethylmethacrylate (PMMA) has been shown to be an effective adjunct in treating infection [21-24]. Bactericidal levels of antibiotics from PMMA spacers are achieved through the process of elution where high concentrations of antibiotic are released locally, with minimal systemic effect, and limited risk to the patient. Peak antibiotic concentrations are mostly reached within the first week after placement; however, some studies have shown antibiotics may still be released at effective concentrations even after 4-6 weeks of implantation [25-30].

The use of long term intravenous (IV) or suppressive oral antibiotic therapy in conjunction with debridement is an important part of treatment. A 2-6 week course of IV antibiotic therapy is recommended depending on the severity of the infection and host immunity [14, 15, 20, 31].   

Fixation techniques for arthrodesis of the diseased ankle secondary to septic arthritis have been controversial. External fixation has been shown to provide adequate torsional stability, but is less effective in maintaining sagittal plane stability. On the other hand, internal fixation has been shown to provide excellent sagittal plane stability, but limited torsional stability. [19] Some authors believe a combination of both fixation techniques lead to optimal outcomes [12, 14, 15, 19, 20].

A concern with arthrodesis is following septic arthritis is loss of limb length. Cancellous bone graft has been shown to be effective in aiding with small defects [15, 20, 31]. Free vascularized bone graft has also been shown to be effective with large bony defects [14, 15, 20]. Use of allograft or synthetic bone grafts have rarely been mentioned in the literature [32]. One technique which has been described in aseptic ankle joint arthrodesis is the use of fibular pillar grafts as structural grafts to maintain length [33].

Patients with chronic infection are not only at risk for loss of joint function, but also limb loss. Cierny et al. related a 25% amputation rate for patients with arthrodesis of septic ankle joints [15]. This case report presents a staged procedure for limb salvage of patients with chronic septic arthritis of the ankle joint.

Case Report

A 54-year-old female with chronic right septic ankle arthritis for 6 months presented for evaluation. The patient had undergone arthrocentesis with corticosteroid, I&D with washout and long-term IV antibiotic therapy. She was offered a below knee amputation elsewhere but was reluctant to proceed and sought a second opinion. Her pre-operative radiographs can be seen in Figure 1 A-C and pre-operative MRI may be seen in Figure 2 A-B.  The patient chose to proceed with staged surgical approach for limb salvage.

Figure 1 Pre-operative radiographs; Mortise view, AP view, and Lateral view.

Figure 2 Pre-operative MRI; T1 Sagittal view, T2 Sagittal view.

The patient underwent needle biopsy of the tibia and talus with arthroscopic debridement. Arthroscopy was performed in standard fashion using a 2.7mm 30-degree arthroscope, utilizing a burr and shaver for ankle joint debridement.  Arthroscopic evaluation of the ankle joint revealed destruction of both tibial and talar articular surfaces.  Cartilage of both articular surfaces was degraded and granular in nature.  Cultures recovered S. aureus infection of the tibia.

Thirteen days later, open arthrotomy of the ankle joint with extensive debridement of the tibia and talus, as well as insertion of a Vancomycin cement spacer was performed.  The arthrotomy was performed using a lateral approach with a fibular osteotomy. The fibula was sent for pathology evaluation and culture, which were shown to be free of any bacterial infection.  Debridement was performed through osteotomies of both the tibia and talus which included the articular cartilage and subchondral plate (Figure 3). The joint was then pulse lavaged with 3L of normal saline-bacitracin mixture and a Vancomycin PMMA spacer was placed within the current ankle joint (Figure 4). This was then stabilized with a monolateral external fixator. The patient was placed on 6 weeks of antibiotic therapy by Infectious Disease including IV Cephazolin and PO Rifampin.

Figure 3 Intra-op radiograph status post fibula take down and wide excisional debridement of tibia and talus.

Figure 4 Intra-op radiographs and picture of Vancomycin PMMA spacer.

Ten weeks later, the patient underwent intramedullary (IM) nail tibiotalocalcaneal arthrodesis (TTC) (Figure 5). The original lateral incision was utilized to access the ankle joint.  The Vancomycin spacer was removed and soft-tissue specimens from the tibia and talus, which were sent for frozen section evaluation by pathology, were negative for infection. The bony surfaces were then prepared for arthrodesis in standard fashion using curettes, osteotomes, and drills. The subtalar joint was prepared in a similar fashion. The ankle was grafted with morselized femoral head combined with bone morphogenic proteins to provide osteoconduction and osteoinduction, as well as fibular pillar grafts to provide structural support and maintain length.  Fixation was accomplished with an IM nail. The patient remained non-weight bearing for 3 months.  She was then transitioned into a fracture boot for an additional month and then into a sneaker. No major or minor complications were noted throughout her recovery process. The patient has continued to improve throughout the post-operative course and is able to bear weight without assistance in standard foot gear. Serial radiographs have demonstrated complete union of all involved joints (Figure 6).

Figure 5 Intra-op radiographs (axial view, AP view, and lateral view) of IM nail with fibular pillar grafts.

Figure 6 Final radiographs showing consolidation (AP ankle, oblique ankle, lateral view) of IM nail with fibular pillar grafts.

Discussion

The fusion rate within the literature varies dramatically. Hawkins showed a variation between 71-94% depending on the control of infection within the joint [13]. Richter also reported a fusion rate of 86.6% for septic ankles [14]. Cierny et al reported results of 83% to 100%. Cierny believed this was secondary to the quality of the surrounding soft tissues. These cases used either external, or hybrid fixation techniques for their fusion [15].

Treatment of S. aureus septic ankle arthritis should include immediate lavage and debridement of the joint with culture and sensitivity driven antibiotic therapy [14, 15, 20].  However, this treatment alone leaves the patient predisposed to continued pain and discomfort secondary to sequela of septic arthritis. Therefore, ankle arthrodesis should be considered as a long-term option following resolution of the infection [4].

External fixation or a hybrid of external and internal fixation has been recommended for arthrodesis following septic ankle arthritis. We used a solitary IM nail for fixation in our cases. Klouche et al. discussed the use of internal fixation in a one-stage procedure using two cross screws through a lateral approach. There technique provided a cure rate of 85% and a consolidation rate of 89.5% at 4.8 months. Empiric antibiotics were administered to all patients and were modified based on culture and sensitivity results obtained at the time of surgery. No local antibiotics were used with their technique [34]. We used IV antibiotics before and after our definitive procedure, as well as, a Vancomycin loaded cement spacer following debridement of the infected bone.

Though our case study is limited, the results have been comparable to previous studies. This approach appears to be reasonable for limb salvage in end-stage degenerative joint disease following septic ankle arthritis. An evidence based study with increased numbers of patients and long term follow up would be beneficial in further accessing this technique for the treatment of septic arthritis of the ankle.

 

References

  1. Cooper C, Cawley MID. Bacterial arthritis in an English health district: a 10 year review. Ann Rheum Dis. 1986; 45:458-463.
  2. Peters RHJ, Rasker JJ, Jacobs JWG, Prevo RL, Karthaus RP. Bacterial arthritis in a district hospital. Clin Rheumatol. 1992; 11:351-355.
  3. Youssef PP, York JR. Septic arthritis: a second decade of experience. Aust N Z J Med. 1994; 24:307-311.
  4. Kaandorp CJE, Krunen P, Bernelot Moens HJ, Habbema JDF, Van Schaardenburg D. The outcome of bacterial arthritis: A prospective community-based study. Arthritis Rheum. 1997; 40(5):884-92.
  5. Meijers KAE, Dijkmans BAC, Hermans J, van den Broek PJ, Cats A. Non-gonococcal infectious arthritis: a retrospective study. J Infect. 1987; 14:13-20.
  6. Yu LP, Bradley JD, Hugenberg ST, Brandt KD. Predictors of mortality in non-postoperative patients with septic arthritis. Scand J Rheumatol. 1992; 21:142-144.
  7. Mathews C. J., Weston V. C., Jones A., Field M., Coakley G. Bacterial septic arthritis in adults. The Lancet.2010; 375(9717):846-855.
  8. Miller A, Abduljabbar F, Jarzem P. Polyarticular Septic Arthritis in an Immunocompetent Adult: A Case Report and Review of the Literature. Case Rep Orthop. 2015; 2015:602137.
  9. Scranton PE Jr. Use of internal compression in arthrodesis of the ankle. J Bone Joint Surg Am. 1985; 67:550–555.
  10. Mann RA, Rongstad KM. Arthrodesis of the ankle: a critical analysis. Foot Ankle Int. 1998; 19:3–9.
  11. Zwipp H, Grass R, Rammelt S, Dahlen C. Arthrodesis: non-union of the ankle—arthrodesis failed. Chirurg. 1999; 70:1216–1224.
  12. Kollig E, Esenwein SA, Muhr G, Kutscha-Lissberg F. Fusion of the septic ankle: experience with 15 cases using hybrid external fixation. J Trauma. 2003 Oct;55(4):685-91.
  13. Hawkins BJ, Langerman RJ, Anger DM, Calhoun JH. The Ilizarov technique in ankle fusion. Clin Orthop. 1994; 303:217–225.
  14. Richter D, Hahn MP, Laun RA, Ekkernkamp A, Muhr G, Ostermann PA. Arthrodesis of the infected ankle and subtalar joint: technique, indications, and results of 45 consecutive cases. J Trauma. 1999; 47:1072–1078.
  15. Cierny G III, Cook WG, Mader JT. Ankle arthrodesis in the presence of ongoing sepsis: indications, methods, and results. Orthop Clin North Am. 1989;20:709–721.
  16. Johnson EE, Weltmer J, Lian GJ, Cracchiolo A III. Ilizarov ankle arthrodesis. Clin Orthop. 1992; 280:160–169.
  17. Lonner JH, Koval KJ, Golyakhovsky V, Frankel VH. Posttraumatic nonunion of the distal tibial metaphysis: treatment using the Ilizarov circular external fixator. Am J Orthop. 1995; suppl: 16–21.
  18. Stasikelis PJ, Calhoun JH, Ledbetter BR, Anger DM, Mader JT. Treatment of infected pilon nonunions with small pin fixators. Foot Ankle. 1993; 14:373–379.  
  19. Thordarson DB, Patzakis MJ, Holtom P, Sherman R. Salvage of the septic ankle with concomitant tibial osteomyelitis. Foot Ankle Int. 1997; 18:151–156.  
  20. Cierny G, Zorn EZ. Arthrodesis of the tibiotalar joint for sepsis. Foot Ankle Clin 1996; 1:177– 97.  
  21. Chen NT, Hong HZ, Hooper DC, May JW. The effect of systemic antibiotic and antibiotic impregnated polymethylmethacrylate beads on the bacterial clearance in wounds containing contaminated dead bone. Plastic Reconst Surg 1993; 97(2):1305–11.
  22. Donati D, Biscaglia R. The use of antibiotic impregnated cement in infected reconstructions after resection for bone tumours. J Bone Joint Surg Br 1998; 80(6):1045– 50.
  23. Popham GJ, Mangino P, Seligson D, et al. Antibiotic impregnated beads: Part II: factors in antibiotic selection. Orthop Rev 1991; 20:331–7.
  24. Ostermann PA, Henry SL, Seligson D. The role of local antibiotic therapy in the management of compound fractures. Corr 1993; 295:102– 11.
  25. Antrum RM, Solomkin JS. A review of antibiotic prophylaxis for open fractures. Orthop Rev 1987; 16:81–9.
  26. Eckman JB Jr, Henry SL, Manginio PD, Seligson D. Wound and serum levels of tobramycin with the prophylactic use of tobramycin-impregnated polymethylmethacrylate beads in compound fractures. Clin Orthop 1988; 237:213–5.
  27. Lerner RK, Esterhai JL, Polomono RC, et al. Psychological, functional, and quality of life assessment of patients with posttraumatic fracture nonunion, chronic refractory osteomyelitis, and lower extremity amputation. Arch Phys Rehab 1991; 72:122–6.
  28. Patzakis MJ, Harvey JP Jr, Ivler D. The role of antibiotics in the management of open fractures.   J Bone Joint Surg Am 1974; 56:532– 41.
  29. Schentag JJ, Lasezkay G, Plant ME, et al. Comparative tissue accumulation of gentamycin and tobramycin in patients. J Antimicrob Chemother 1979; 4(SupplA):23–30.
  30. Seligson D, Popham GJ, Voos K, Henry SL, Faghri M. Antibiotic-leaching from polymethylmethacrylate beads. J Bone Joint Surg Am 1993; 75:714– 20.
  31. Stuart MJ, Morrey BF. Arthrodesis of the diabetic neuropathic ankle joint. Clin Orthop 1990; 253:209– 11.  
  32. Esterhai JL Jr, Sennett B, Gelb H, et al. Treatment of chronic osteomyelitis complicating nonunion and segmental defects of the tibia with open cancellous bone graft, posterolateral bone graft, and soft tissue transfer. Trauma 1990; 30:49–54.
  33. Paul J, Barg A, Horisberger M, Herrera M, Henninger HB, Valderrabano V. Ankle salvage surgery with autologous circular pillar fibula augmentation and intramedullary hindfoot nail. J Foot Ankle Surg. 2014 Sep-Oct; 53(5):601-5.
  34. Klouche S, El-Masri F, Graff W, Mamoudy P. Arthrodesis with internal fixation of the infected ankle. J Foot Ankle Surg. 2011 Jan-Feb; 50(1):25-30.

Acknowledgements: None

Conflicts of Interest: None

Communications Author: Sham Persaud

Level of Evidence: Level IV Therapeutic Study