Category Archives: Uncategorized

Dual plating technique for comminuted second metatarsal fracture in the diabetic obese patient: A case report

by Sham Persaud DPM, MS1*, Anthony Chesser DPM1, Karl Saltrick DPM1

The Foot and Ankle Online Journal 10 (4): 4

Metatarsal fractures represent a common fracture type accounting for 35% of all fractures within the foot and 5% of total skeletal fractures annually. Central metatarsal fractures are caused by excess torsional force applied to the bone or direct trauma, with most fractures being attributed to the latter. As with most fractures, minimally displaced fractures of the central metatarsals are amenable to conservative treatment including protected immobilization and RICE therapy. In general, physicians may be accepting of subtle displacement of central metatarsal fractures accepting up to 10 degrees of displacement and 3mm of translation in any direction. When displacement is too great, metatarsal fractures are treated with closed reduction with percutaneous pin fixation or ORIF with pin or single plate fixation. This case report presents a case of a gentleman who suffered from a comminuted metatarsal with a unique fracture pattern that required dual plating technique for proper reduction of the fracture. With this unique fracture type, dual plate technique optimized fixation in order to stabilize an unstable fracture of a second metatarsal in an obese patient with diabetes.

Keywords: metatarsal fracture, stress fracture, diabetes, obesity, metatarsal plate

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0004

1 – West Penn Hospital Foot and Ankle Institute, 4800 Friendship Ave, Pittsburgh, PA 15224
* – Corresponding author:

Metatarsal fractures represent a common fracture type accounting for 35% of all fractures within the foot and 5% of total skeletal fractures annually [1]. These fractures can be isolated injuries, simultaneous fractures with other metatarsals and foot fractures with ligamentous Lisfranc injuries. They can also be either traumatic or caused by prolonged stress across the bone. Most metatarsal fractures are generally a result of low energy trauma, however high energy crush injuries may occur [2].

Metatarsal fractures occur in multiple locations and are generally divided by location into proximal metaphyseal, diaphyseal/shaft, and head/neck fractures. Proximal fractures are generally associated with Lisfranc injuries. Proximal metatarsal fractures generally remain stable and well aligned secondary to the multiple ligamentous and tendinous structures which stabilize the metatarsals [2-4]. Diaphyseal fractures are generally oblique in nature, but can present in many fracture patterns. These fractures are less stable and should be evaluated for shortening and displacement [5]. The diaphyseal region is the most common site for stress fractures of metatarsals, especially the central metatarsals. Stress fractures, if untreated, can progress to complete transverse or oblique fractures. If displacement is present with diaphyseal fractures, it typically occurs plantarly and laterally [1].

Central metatarsal fractures occur considerably more than first metatarsal fractures. These fractures can affect more than one metatarsal as metatarsal 2-4 generally act as a unit. The literature states that 63% of third metatarsal fractures occur with either a second or fourth metatarsal fracture or 28% with both. Therefore, extensive evaluation of radiographs and possibly the use of other imaging modalities should be used if an isolated metatarsal fracture is identified in metatarsals 2-4 [2].

Central metatarsal fractures are caused by excess torsional force applied to the bone or direct trauma, with most fractures being attributed to the latter [1,2]. Direct trauma includes crush injuries or penetrating injuries to the foot. Spiral or oblique fractures are produced by a twisting injury over a fixed forefoot. Secondary to central metatarsal lack of motion, soft tissue attachments, and stable articulations, these fractures are intrinsically stable. However, when displacement occurs, the central metatarsals are more likely to displace as a unit [1,2].

As with most fractures, minimally displaced fractures of the central metatarsals are amenable to conservative treatment including protected immobilization and RICE therapy. In general, physicians may be accepting of subtle displacement of central metatarsal fractures accepting up to 10 degrees of displacement and 3mm of translation in any direction [6-9]. Plantar displacement is often tolerated the least out of all planes of deformity secondary to excessive plantar pressures. Dorsally displaced fractures can cause excessive strain on adjacent metatarsals leading to transfer plantar lesions and possible adjacent stress fractures. Frontal and transverse plane deformity, generally are well tolerated. However, it has been shown that displacement in the frontal or transverse plane may cause nerve irritation in the metatarsal interspaces, as well as, digital deformity over time [6-9].

The goal of central metatarsal fractures is to achieve anatomic alignment of the metatarsal using stable fixation. This goal can be achieved using both open and closed techniques. In patients with significant comorbidities or vascular compromise achieving extra stable reduction utilizing minimally invasive techniques is idea [1].

Percutaneous Kirschner (K-wire) wire pinning can be performed with a variety of techniques for adequate fixation. The most common method includes intramedullary fixation across the fracture site with use of a large diameter k-wire. Crossing multiple k-wires may also be an acceptable technique for fixating metatarsal fractures [10]. Advantages of k-wire fixation include the ability to maintain vascularity to the fractured bone with minimal dissection and soft tissue disruption. The main disadvantage is the inability for direct visualization and manipulation of the fracture [1].

Open reduction internal fixation (ORIF) is also a viable option for treatment of metatarsal fractures, especially if the fracture is significantly displaced or comminution is present. ORIF technique has the advantage of being able to visualize the fracture site in order to achieve complete anatomic reduction with application of more stable fixation [1]. In terms of fixation, screw fixation is possible for oblique type fractures, however, use of screws for central metatarsal fractures may be challenging. If ORIF technique is used, fixation generally consists of either k-wire fixation, or the use of dorsal plate fixation using mini or small fragment plates and screws. Locking plates may also be beneficial in patients with significant comorbidities or poor bone stock [1].  

Complications are relatively uncommon with either technique. Common complications with fixation of central metatarsal fractures include delayed or non-union, malunion, metatarsalgia, or digital deformity. In general delayed union or malunion complications are secondary to poor blood supply due to dissection techniques or comorbidities, or excess stress secondary to chronic stress fracture and foot deformity [1].

Biomechanical studies have shown that biplane fixation has increased stiffness as well as a decrease chance of hardware failure resulting in a more stable construct. Dayton et al in their biomechanical study showed that biplane plating showed to have superior or equivalent stability in multiplanar orientations as compared to a single plate with interfragmentary screw. However, dual plating is not without its drawbacks; Increased soft tissue dissection, periosteal stripping, theoretical increased operating room time, increased chance of hardware irritation, and increased cost are several disadvantages to dual plating [11].

There have been numerous studies that reference orthogonal/dual plating throughout the body for fracture reduction and stabilization [11-23]. However; there have been no studies for dual plating lesser metatarsals for acute fractures. The purpose of this case study was to provide a scenario where the application of dual plating technique to an unstable lesser metatarsal fracture was warranted.

Case Report

A 52-year-old male presented with acute tenderness to the 2nd metatarsal of the right foot. The pain began approximately one week prior to presenting to us. He denied any injury to his recollection. He initially thought it was a gout flare up secondary to his history of gout flare ups and was prescribed a Medrol dose pack by his PCP which provided no relief. Therefore, the patient went to the emergency room in which radiographs were taken which demonstrated the patient had a displaced mid-diaphyseal fracture to the second metatarsal of the right foot (Figure 1). The patient also stated that within the last week he had also noticed lateral deviation of his second digit which was progressive. This was confirmed via physical exam as a flexible deformity secondary to displacement of the metatarsal fracture site. Physical exam revealed acute swelling and warmth about the midfoot and forefoot of the right foot focused about the second metatarsal. No ecchymosis was present. There was also point tenderness to the second metatarsal with reducible lateral deviation of the second digit at the level of the second metatarsophalangeal joint (MTPJ). With the radiographic displacement present and the patient’s medical history including diabetes, obesity, gout and other associated medical ailments it was decided the best course of action for the patient was to schedule the patient for ORIF of the second metatarsal with capsulotomy and extensor tendon lengthening to the second digit all right foot. Until the surgery the patient was placed in a Jones compression dressing and placed in a CAM walking boot.

Figure 1 Pre-operative radiographs AP, oblique, lateral.

One week after initial presentation, the patient underwent ORIF of the second metatarsal with capsulotomy and extensor tendon lengthening of the second MTPJ of the right foot. Incision placement was made on the dorsal aspect of the second metatarsal beginning at level of the proximal third of the metatarsal extending distally past the second MTPJ. Dissection was carried down to the level of the extensor tendons in which a Z-tenotomy of the extensor digitorum longus tendon, as well as, a complete tenotomy of the extensor digitorum brevis tendon was performed.

At this time, attention was focused to the fracture site. Using standard techniques all bone callus was debrided and the fracture was reduced by joystick technique utilizing a 0.062 K-wire in the capital fragment in order reduce the fracture and pull the metatarsal out to length. Once adequate reduction was achieved, the fracture sites were fixated provisionally with 0.045 K-wires. With further evaluation and thought, it was determined that two plate fixation would be optimal fixation with the current fracture pattern. This was achieved utilizing two 6-hole mini-fragment locking plates oriented obliquely into the bone and staggered for proper locking screw placement (Figure 2). With the two plate construct, both medial and lateral dorsal fragments were fixated to the constant plantar fragment achieving stable fixation.

Figure 2 Intraoperative radiographs AP, oblique, lateral.

After fixating the fracture site, soft tissue balancing for the lateral deviation of the second digit was performed. With reduction of the fracture, the digit deviation had decreased dramatically. The remaining deformity was addressed by performing a lateral capsulotomy at the level of the MTPJ and repairing the extensor longus tendon in an elongated state providing no tension to the digit at the level of the second MTPJ.

Post-operatively the patient remained non-weight bearing in a CAM walking boot for 4 weeks. After 4 weeks, the patient began to progressively bear weight on his right foot in a CAM boot only. After 2 weeks of weight bearing in a CAM boot the patient was transitioned into a tennis shoe comfortably. At that time, serial radiographs were obtained showing adequate consolidation of the fracture site with maintained reduction and position (Figure 3). The patient was able to return to work in full capacity at 8 weeks with no restrictions.  

Figure 3 Post-op clinical pictures and radiographs AP, oblique and lateral.


Comminuted fractures of any long bone can be challenging to treat surgically. Though there are many techniques which have been shown to be viable options for such fracture types, dual plating has been shown to provide adequate stability and maintain correction of complex fractures of long bones.

As stated, Dayton et al were able to show that a dual locking plate technique with single cortex locking screws, when compared to single locking plate with interfragmentary screw fixation, showed superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Though this study was used primarily to show stability at fusion sites such as the first tarsometatarsal joint, the results are very applicable to complex fractures of long bones [11].

Dual plating has also been documented as a viable option for fracture fixation within the literature. There have been many studies within orthopedic literature showing the successful use of dual plating technique for fracture ORIF of fractures not within the foot and ankle [18-23]. However, there is also extensive literature is the use of dual plating for complex ankle fractures [12-17].

Kwaadu et al. evaluated the use of dual plate technique for the repair of complex fibular fractures on 25 patients. All 25 patients underwent benign postoperative courses with eight patients having complications all of which were wound complications. No additional operations were performed as a result of this technique. No patient undergoing this technique complained of any hardware irritation, and no hardware removal was required. The average time to radiological healing confirmed via radiograph was 7.5 weeks [12]. Vance et al. reviewed 12 consecutive patients who underwent ORIF of fibular fractures utilizing two 1/3 tubular plates for fixation. All fractures healed both clinically and radiographically. Only one patient required hardware removal. FAOS scores were obtained at a mean of 25.6 months after surgery and showed results of pain (87.6, SD = 9.5), activities of daily living (90.4, SD = 14.5), symptoms (93.3, SD = 9.5), sports (89.5, SD = 18.1), and quality of life (57.4, SD = 21.3) [13].

Our case report demonstrated successful use of dual plating technique for ORIF of a comminuted metatarsal fracture. It is our belief that this technique provides added support which was needed secondary to the fracture pattern presented. Dual plating is warranted in cases when traditional fixation techniques (i.e. K-wire fixation, screw, single plate) will not allow for appropriate reduction or stabilization of the fracture segment. This fixation technique can be another tool in the surgeon’s armamentarium.  While this case study was not the first to incorporate dual plating in fracture cases, it is the first to document dual plate technique for lesser metatarsal fractures.


  1. Buddecke D, Polk M, Barp E. Metatarsal fractures. Clin Podiatr Med Surg. 2010 Oct;27(4):601-24.
  2. Petrisor B, Ekrol I, Court-Brown C. The epidemiology of metatarsal fractures. Foot Ankle Int 2006;27:172–5.
  3. Maskill J, Bohay D, Anderson J. First ray injuries. Foot Ankle Clin N Am 2006;11: 143–63.
  4. Pearson J. Fractures of the base of the metatarsals. BMJ 1962;1:1052–4.
  5. Maxwell J. Open or closed treatment of metatarsal fractures: indications and techniques. J Am Podiatry Assoc 1983;73:100–6.
  6. Hansen ST. Foot injuries. In: Browner BD, Jupiter JB, Levine AM, et al, editors. Skeletal trauma. Philadelphia: WB Saunders Company; 1998. p. 2405–38.
  7. Early J. Metatarsal fractures. In: Bucholz R, Heckman J, Rockwood C, et al, editors. Rockwood and green’s fractures in adults. Lippincott, Williams, & Wilkins; 2001. p. 2215.
  8. Shereff M. Complex fractures of the metatarsals. Orthopedics 1990;13(8):875–82.
  9. Armagan O, Shereff M. Injuries to the toes and metatarsals. Orthop Clin North Am 2001;32(1):1–10.
  10. Donahue M, Manoli A. Technical tip: transverse percutaneous pinning of metatarsal neck fractures. Foot Ankle Int 2004;25(6):438–9.
  11. Dayton P, Ferguson J, Hatch D, Santrock R, Scanlan S, Smith B. Comparison of the mechanical characteristics of a universal small biplane plating technique without compression screw and single anatomic plate with compression screw. J Foot Ankle Surg. 2016 May-Jun;55(3):567-71.
  12. Kwaadu KY, Fleming JJ, Lin D. Management of complex fibular fractures: double plating of fibular fractures. J Foot Ankle Surg. 2015 May-Jun;54(3):288-94.
  13. Vance DD, Vosseller JT. Double Plating of Distal Fibula Fractures. Foot Ankle Spec. 2017 Feb 1:1938640017692416.
  14. Singh SK, Wilson MG. A Double Plate Technique for the Management of Difficult Fibula Fractures. Techniques in Foot & Ankle Surgery. 2005:4(4); 235-239.
  15. Savage TJ, Stone PA, McGarry JJ. Internal fixation of distal fibula fractures: a case presentation demonstrating a unique technique for a severely comminuted fibula. J Foot Ankle Surg. 1995 Nov-Dec;34(6):587-92; discussion 596.
  16. Lowe JA, Tejwani N, Yoo BJ, Wolinsky PR. Surgical techniques for complex proximal tibial fractures. J Bone Joint Surg Am. 2011 Aug 17;93(16):1548-59.
  17. Wykes PR, Eccles K, Thennavan B, Barrie JL. Improvement in the treatment of stable ankle fractures: an audit based approach. Injury. 2004 Aug;35(8):799-804.
  18. Helfet DL1, Hotchkiss RN. Internal fixation of the distal humerus: a biomechanical comparison of methods. J Orthop Trauma. 1990;4(3):260-4.
  19. Shin SJ, Sohn HS, Do NH. A clinical comparison of two different double plating methods for intraarticular distal humerus fractures. J Shoulder Elbow Surg. 2010 Jan;19(1):2-9.
  20. Nauth A, McKee MD, Ristevski B, Hall J, Schemitsch EH. Distal humeral fractures in adults. J Bone Joint Surg Am. 2011 Apr 6;93(7):686-700.
  21. Kaipel M, Majewski M, Regazzoni P. Double-plate fixation in lateral clavicle fractures-a new strategy. J Trauma. 2010 Oct;69(4):896-900.
  22. Prasarn ML, Meyers KN, Wilkin G, Wellman DS, Chan DB, Ahn J, Lorich DG, Helfet DL. Dual mini-fragment plating for midshaft clavicle fractures: a clinical and biomechanical investigation. Arch Orthop Trauma Surg. 2015 Dec;135(12):1655-62.
  23. Hirvensalo E, Lindahl J, Kiljunen V. Modified and new approaches for pelvic and acetabular surgery. Injury. 2007 Apr;38(4):431-41.

Spontaneous double tendon rupture of the ankle

by Jay Kaufman DPM1, Alexander Newton DPM2*, Payel Ghosh DPM3, Zachary Ritter DPM4

The Foot and Ankle Online Journal 10 (4): 3

We present an independent case study of a 54-year-old woman that underwent arthroscopic ankle synovectomy with an open Broström lateral ankle stabilization who eventually suffered a spontaneous tendon rupture of both the extensor digitorum longus (EDL) and extensor hallucis longus (EHL) during the post-operative period. Though the postoperative course was initially uneventful, the patient began experiencing pain and swelling about the ankle joint upon transition to full weight bearing three weeks following surgery, but prior to physical therapy implementation. She was subsequently diagnosed with a combined EHL and EDL tendon rupture as well as chronic tendinosis of both tendons. We present this case as a rare complication following arthroscopy directly related to chronic tendinosis, resulting in potentially detrimental implications during postoperative recovery period.

Keywords: spontaneous, extensor tendon rupture, arthroscopy

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0003

1 – Physician; OAA Orthopedic Specialists, Allentown, PA
2 – Resident Physician; Department of Podiatric Surgery, St. Luke’s University Hospital, Allentown, PA
3 – Physician; Syracuse Podiatry, East Syracuse, NY
4 – Physician; Department of Foot and Ankle Surgery, Wound Care, and Podiatry. UPMC Susquehanna Hospital, Williamsport, PA
* – Corresponding author:

The incidence of tendon rupture following arthroscopic ankle intervention is rare. Spontaneous tendon rupture, with or without intervention, is uncommon. Generally, spontaneous tendon rupture is directly correlated with a combination of mild trauma and chronic degeneration of a tendon. Other contributing factors are systemic diseases, biomechanical abnormalities, fluoroquinolone use, and steroid usage. The Achilles tendon is the most common tendon to experience spontaneous rupture, followed by the patellar tendon, and the Tibialis Anterior (TA).

Specifically, a pes planovalgus foot type can cause excessive recruitment of the muscles required for ankle joint dorsiflexion, the long extensor tendons and the TA. Concomitant factors such as ankle equinus and obesity should be considered during the preoperative examination.

If tendon pathology is expected, a Magnetic Resonance Imaging (MRI) should be obtained. An increase in T2 signal intensity surrounding the tendon is consistent with tenosynovitis. Tendinosis, on the other hand would be delineated by tendon thickening on both T1 and T2 weighted images with increased T2 signal [1]. If the MRI is contraindicated, an ultrasound is a viable option.

Case Presentation

We report the case of a 54-year-old female, who sought a second opinion for continued lateral ankle pain and instability. She had an ankle MRI performed about one year prior to presentation and continued to have nearly daily recurrent left ankle sprains as well as constant aching left ankle pain. Pertinent findings on physical exam were a mild hindfoot varus deformity, a BMI of 40.4, intact manual muscle testing, lateral ankle instability, and tenderness on palpation of the lateral ankle including the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), and the sinus tarsi. After failing prior conservative treatment, surgical intervention was pursued via ankle arthroscopy and lateral ankle stabilization. Ankle arthroscopy was performed uneventfully through a standard anteromedial and anterolateral ankle portal. Postoperatively, she was placed in a posterior splint with the hindfoot placed in slight valgus position.

The postoperative course passed uneventfully until the patient was transitioned from a posterior splint to an ankle brace weight bearing as tolerated one month postoperatively. She was instructed to use assistive devices as necessary and given a prescription for rehabilitative therapy. A few days following weight bearing, the patient noted sudden increased swelling surrounding the ankle joint, along with stiffness and burning within her first three digits. Radiographs and labs to rule out fracture, infectious or inflammatory process were negative. With clinical improvement, she proceeded to complete several weeks of physical therapy with resolution of ankle instability; however, in addition to stiffness and weakness of her lesser toes she began to complain of great toe weakness.

An MRI of the left ankle and left foot was obtained approximately 3.5 months postoperatively. Imaging at the level of the ankle demonstrated a ruptured EDL and EHL retracting proximally above the tibiotalar joint without violation of the anterior joint capsule. MRI at the level of the foot demonstrated tendinosis of the same tendons distal to the level of the ruptures.


In 2012, Zengerink et al reviewed complications in ankle arthroscopy. He found neurologic injury to be the most common finding, followed by infection in a review of 1176 patients. Zengerink et al reported no tendon rupture following arthroscopic surgery within their follow up of approximately 7.5 years [2]. To our knowledge, there are only a small collection of prior reported incidences of tendon rupture following arthroscopy of the ankle joint. In 2010 Tuncer et al reported an incident of extensor hallucis longus and extensor digitorum longus insufficiency following radiofrequency ablation during ankle arthroscopy. Of note, intraoperatively both tendons were noted to be intact while the anterior capsule had been affected. However 10 weeks postoperatively, the patient did feel a “pop” and dual tendon rupture was then diagnosed [3].

Single tendon rupture following ankle arthroscopy is a rarity. Rupture of two tendons simultaneously without consideration of iatrogenic injury is improbable. The initial MRI, performed in 2010 prior to any surgical intervention, demonstrated an intact EHL, EDL, and TA. To further solidify our findings of this rare complication, a musculoskeletal radiologist was consulted (Figure 1). On MRI following any surgery, micrometallic debris can be detected in the soft tissues. This causes a susceptibility artifact in the tissues, which appears as multiple small foci of decreased signal on MRI. Figure 2 shows the metallic artifact surrounding the region of repair in the lateral ankle. No artifact is present in the anterior tissues surrounding the ruptured extensor tendons. Lack of metallic artifact as well as no anterior surgical track strongly argues against any kind of surgically induced laceration of the tendons.

Figure 1 MRI of normal ankle anatomy.

Figure 2 Micrometallic debris at site of lateral ankle repair.

Figure 3 demonstrates thickening and increased signal intensity of the long extensor tendons distal to the level of the rupture, consistent with tendinosis. If the tendons had been lacerated during surgery, the cut edges of the tendons would be expected to be sharply demarcated without thickening or increase in signal intensity.

Figure 3 MRI demonstrating absent extensor tendons at rupture site.

Figure 4 MRI demonstrating tendonitis distal to rupture.

Figure 4 demonstrates the lack of the long extensor tendons near the level of the ankle joint. The TA has remained intact. Figures 5 and 6 demonstrate the intact articular surface of the lateral aspect of the joint showing no issues with ingress or egress flow allowing us to further conclude that the articular capsule remains intact.

Figure 5 Intact intra-articular surface of the lateral shoulder of talus and fibula.

Figure 6 Distal tip of fibula and lateral talus.

If iatrogenic causes are ruled out, predisposing factors for tendon rupture must be considered. When an MRI is ordered for evaluation, chronic conditions can be missed as a result of being focused on acute pathologies. In general, chronic tendinosis and extensor tendon pathology are underreported in MRI reports [1]. This patient had multiple predisposing factors for increased strain on her extensor tendons: morbid obesity with a BMI of 40.4, pes planovalgus foot type, equinus strain following immobilization from surgery, and recurrent ankle sprains all likely contributed to rupture in the postoperative period. Additionally, patients bear weight differently on weight-bearing joints following surgery.

In the postoperative period, altered stress across the ankle joint in combination with a period of immobilization likely led to spontaneous rupture, due to the underlying tendinosis now appreciated on the postoperative MRI. In addition to noted EHL and EDL tendinosis, there was noted metallic artifact lateral about the Broström site as would be expected, however, there was no metallic artifact within the anterior soft tissues surrounding the extensor tendons, nor a surgical tract from the ankle joint to the anterior ankle tendons.


Spontaneous lower extremity tendon rupture, while rare, is a real possibility. We do not believe that the rupture of the long extensor tendons was due to iatrogenic injury. Rather, we believe that the combination of chronic tendinosis, immobility following surgery, and changing stresses on an already unhealthy tendon lead to tendon rupture as the patient’s physical therapy regimen was escalated. We believe that prevention of this hinges on proper diagnosis of chronic tendon pathology pre-operatively. When a patient presents preoperatively with gait dysfunction, a thorough evaluation of tendon pathology should not be overlooked prior to any surgical planning.


  1. Tsao LY. “Ankle Extensor Tendon Pathology.” Radsource MRI Web Clinic. July 2014.
  2. Zegerink M, van Dijk CN. “Complications in Ankle Arthroscopy.” Knee Surgery Sports Traumatology Arthroscopy. 2012 Aug; 20 (8): 1420-31.
  3. Tuncer S, Aksu N, Isiklar U. Delayed rupture of the extensor hallucis longus and extensor digitorum communis tendons after breaching the anterior capsule with a radiofrequency probe during ankle arthroscopy: a case report. Journal of Foot and Ankle Surgery 2010; Sep-Oct; 49(5).

The use of unidirectional porous β-tricarcium phosphate in surgery for calcaneal fractures: A report of four cases

by Shigeo Izawa1*, Toru Funayama2, Masashi Iwasashi1, Toshinori Tsukanishi3, Hiroshi Kumagai2, Hiroshi Noguchi2, Masashi Yamazaki2

The Foot and Ankle Online Journal 10 (4): 2

Affinos@ (Kuraray) is a unidirectional porous β-tricarcium phosphate (UDPTCP). We investigated four patients (four feet) who underwent invasive surgery using UDPTCP to treat calcaneal fractures that were accompanied by a bone defect. The mean age was 63.8±6.4 years old, and the mean observation period was 9.3±3.2 months. We evaluated the changes of UDPTCP over time and correction loss due to its use. In all patients, favorable material absorption and bone substitution were obtained, and their clinical courses were also favorable.

Keywords bone graft , unidirectional porous β-tricarcium phosphate, calcaneus fractures

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0002

1 – Department of Orthopedics, Tsukuba Medical Center Hospital. Tsukuba, Japan
2 – Department of Orthopedics, Faculty of Medicine, University of Tsukuba , Japan
3 – Department of Orthopedics, Kenpoku Medical Center Takahagi Kyodo Hospital, Takahagi, Japan
* – Corresponding author:

Bone grafting is often required to treat bone fractures that are accompanied by a bone defect. It is apparent that autogenous bone is optimal for bone grafting, but it has disadvantages due to problems with the procedures and quantity of bone graft. Thus, various types of artificial bones have been developed and clinically applied. Affinos@ (Kuraray) is a unidirectional porous β-tricarcium phosphate (UDPTCP) consisting of a novel porous artificial bone with a porosity of 57%, in which communication holes of 25-300 μm are arranged in one direction. It is characterized by balanced artificial bone resorption and replacement of autologous bone [1]. However, only a few clinical outcomes have been reported using this type of UDPTCP. We reported the outcomes of invasive surgeries using UDPTCP in four patients with calcaneus fractures that were accompanied by a bone defect.

Case presentation

Patients and procedures

The subjects were four patients (four feet) who underwent invasive treatments in one of two facilities between February and September 2015. The mean age was 63.8±6.4 years old, and the mean observation period was 9.3±3.2 months. All injuries occurred due to falling accidents, and the radiographic Essex-Lopresti classification was depression type in three patients and tongue type in one patient (Table 1).

During the surgery, a small incision was made on the lateral side of the calcaneus to reduce the fracture area, and a UDPTCP block (two patients) or granules (two patients) was used to fill the bone defect area, depending on its size. A plate (two patients), Steinmann pin (one patient), or K-wire (one patient) was used for internal fixation. The block was installed so that the communication hole was parallel to the load axis. Partial weight bearing was started after 4-6 weeks of non-weight bearing, and full-body weight bearing was allowed at 9-12 weeks.

Plain radiographs were taken before and immediately after the surgery, as well as 1, 3, and 6 months postoperatively to evaluate changes of the UDPTCP and corrective loss over time. The corrective loss was evaluated using the Bohler angle. In one patient in whom granules were used, plain computed tomography (CT) was performed at 3, 6, and 12 months postoperatively to observe the material absorption and bone neogenesis over time in detail.

Case Age


Sex Type of fracture Artificial bone Material used for internal fixation
1 67 M Depression type Ⅱ° Block Plate
2 60 M Depression type Ⅲ° Granule Steinmann pin
3 71 F Tongue type Ⅱ° Granule K-wire
4 57 M Depression  type Ⅱ° Block Plate

Table 1 Radiographic Essex-Lopresti classification of each case.

As seen on a plain radiography image, absorption of the UDPTCP progressed within 3 months postoperatively, the majority of the material was absorbed within 6 months postoperatively, and substitution for the bone progressed. On average, the Bohler angle was 5.9° before the operation, 24.5° immediately after, and 21.3° at the final assessment, demonstrating that there was little correction loss after the surgery (Figure 1). Similar changes over time were observed on plain CT images, and the majority of the material had substituted for bone 1 year postoperatively.

Figure 1 Changes of the Bohler angle over time.

Case 1 (Figure 2, 3)

The patient in Case 1 was a 67-year-old man, and he was injured due to falling from a step ladder during pruning work. He underwent surgery 17 days after the injury. The type of fracture was depression type Ⅱ°. The surgical approach was via a lateral skin incision, and the articular surface was reduced by raising the depressed bone fragment. Part of the UDPTCP block was trimmed to the bone defect part, and three blocks were used to fill the defect. Then, plate fixation was performed.

Partial weight bearing was started at 6 weeks postoperatively, and full-body weight bearing was allowed at 10 weeks. During clinical examination, the Bohler angles were as follows: before the surgery: 0°, immediately postoperatively: 25°, and at the final observation (6 months postoperatively): 22°.

After the surgery, no complications occurred, and, as seen on a plain radiography image, artificial bone was absorbed at 3 months postoperatively. In a plain radiography image that was taken 6 months postoperatively, artificial bone was found to have substituted for the natural bone, and the shadow of the artificial bone almost disappeared (Figure 3).

Figure 2 Plain radiography images, from left: at the time of injury, immediately after the surgery, 3 months postoperatively, and 6 months postoperatively.

Figure 3 Plain radiography images (zoom). Left: 3 months postoperatively; Right: 6 months postoperatively.

Case 2 (Figure 4, 5)

The patient in Case 2 was a 60-year-old man who was injured by falling from a truck loading platform. The patient underwent surgery 6 days after the injury. The type of fracture was depression type Ⅲ°.

During the surgery, the approach was via a skin incision, and the articular surface was reduced by raising the depressed bone fragment. The bone defect area was filled with 2 g of UDPTCP granules. Then, a Steinmann pin was inserted from behind.

Partial weight bearing was started at 6 weeks postoperatively, and full-body weight bearing was allowed at 10 weeks. On clinical examination, the Bohler angles were: before the surgery: 1°, immediately after the surgery: 18°, and at final observation (one year postoperatively): 13°.

No complications occurred following the surgery, and the Steinmann pin was removed 6 weeks postoperatively. As seen on a plain CT image one year after the surgery, the artificial bone was almost substituted for the natural bone, and the trabecular structure was located inside it (Figure 5).

Figure 4 A plain radiography image. Left panel: at the time of injury, middle panel: immediately after the surgery, right panel: 6 months after the surgery.

Figure 5 Plain CT images, from left: immediately after the surgery, 3 months after the surgery, 6 months after the surgery, and one year after the surgery.


Calcaneal fractures that occur due to falling accidents often result in crushed cancellous bone and bone defects after reduction. Furthermore, bone atrophy and joint contracture occur following long-term non-weight bearing and fixation, complicating the treatment. A biomechanical study by Inoue et al reported that performing bone grafting to treat a calcaneal fracture is useful to maintain repaired bone fragments [2] .  Takai et al.examined the use of β-TCP artificial bone in 5 patients (5 feet) in older patients (aged ≥ 70 years) with calcaneus fractures, and the mean change of the Bohler angle postoperatively was 1°, demonstrating that the procedure has favorable results [3]. Nakagawa et al found that β-TCP has advantages, because it is easy to penetrate β-TCP with a K-wire after grafting [4]. It can also be applied easily in young adults because it can be completely absorbed. However, in some cases, grafted granular β-TCP leaked into the subtalar joint, and was not absorbed even after 1 year or more; therefore, the authors recommended performing grafting with blocked β-TCP instead of granules in patients with comminuted fractures.

Regarding UDPTCP, Makihara et al. used rabbit bone defect models and reported that UDPTCP leads to superior absorption and substitution for autologous bone [1]. In the present study, favorable absorption and bone substitution were confirmed for both UDPTCP block and granules, and no patient had an infection or foreign body reaction, indicating that the postoperative outcomes of the procedure are favorable. Furthermore, the correction loss was small, even after weight bearing was started, suggesting that UDPTCP had sufficient strength to withstand early weight bearing. Regarding the speed of replacement for autogenous bone, a report5) using Osferion (porosity 75%; Olympus), which is a common β-TCP that is used in Japan, showed that, on average, assimilated shadows of the surrounding bone and trabecular bone formation appeared at 8 weeks postoperatively, and the shadow of absorbed artificial bone disappeared at 8 months postoperatively. In our study, absorption of artificial bone was observed at 3 months postoperatively in all cases, and the artificial bone was absorbed almost completely and replaced with autogenous bone at 6 months postoperatively in the earliest case. Although the substitution speed varies depending on the amount and site of grafted artificial bone and the patient’s age, the substitution speed of the UDPTCP was comparable with that of conventional β-TCP, suggesting that UDPTCP is a useful bone filling material in the treatment of calcaneal fracture.

In conclusion, we performed surgery using UDPTCP in patients with calcaneus fractures. In all cases, favorable material absorption and bone substitution were observed, and the clinical outcomes were favorable.


  1. Takeshi M. The balance between bone formation and material resorption in unidirectional porous β-tricalcium phosphate implanted in a rabbit tibia. Key Engineering Materials, 696:177-182, 2016.
  2. Nozomu I. The usefulness of combining bone grafts in open surgery of calcaneus fracture. Fracture, 12:173-177, 1990.
  3. Hirokazu T. Open reduction and internal fixation with artificial bone grafts for calcaneus fractures in elderly people. Journal of Orthopedics & Traumatology, 61:765-768, 2012.
  4. Yusuke N. Treatment outcomes of open reduction and fixation using granularβ-TCP by lateral scalpel for intra articular calcaneus fractures. Fracture, 34:446-450, 2012.
  5. Naohiro T. The usefulness of theβ-TCP as bone filling material. Journal of Orthopedics & Traumatology, 63:875-877, 2014.

Effects of medial and lateral orthoses on kinetics and tibiocalcaneal kinematics in male runners

by Jonathan Sinclair1*

The Foot and Ankle Online Journal 10 (4): 1

Background: The aim of the current investigation was to examine the effects of foot orthotic devices with a 5° medial and lateral wedge on kinetics and tibiocalcaneal kinematics during the stance phase of running.
Material and methods: Twelve male participants ran over a force platform at 4.0 m/s in three different conditions (5° medial orthotic, 5° lateral orthotic and no-orthotic). Tibiocalcaneal kinematics were collected using an 8 camera motion capture system and axial tibial accelerations were obtained via an accelerometer mounted to the distal tibia. Biomechanical differences between orthotic conditions were examined using one-way repeated measures of analysis of variance (ANOVA).
Results: The results showed that no differences (P>0.05) in kinetics/tibial accelerations were evident between orthotic conditions. However, it was revealed that the medial orthotic significantly (P<0.05) reduced peak ankle eversion and relative tibial internal rotation range of motion (-10.75 & 4.98°) in relation to the lateral (-14.11 & 6.14°) and no-orthotic (-12.37 & 7.47°) conditions.
Conclusions: The findings from this study indicate, therefore, that medial orthoses may be effective in attenuating tibiocalcaneal kinematic risk factors linked to the etiology of chronic pathologies in runners.

Keywords: running, biomechanics, orthoses, kinetics, kinematics

ISSN 1941-6806
doi: 10.3827/faoj.2017.1004.0001

1 – Center for Applied Sport Exercise and Nutritional Sciences, School of Sport and Wellbeing, Faculty of Health & Wellbeing, University of Central Lancashire, Preston, Lancashire, PR1 2HE.
* – Corresponding author:

Distance running is associated with a significant number of physiological and psychological benefits [1]. However, epidemiological analyses have demonstrated that pathologies of a chronic nature are extremely common in both recreational and competitive runners [2] and as many as 80% of runners will experience a chronic injury as a consequence of their training over a one-year period [2].

Given the high incidence of chronic pathologies in runners, a range of strategies have been investigated and implemented in clinical research in an attempt to mitigate the risk of injury in runners. Foot orthoses are very popular devices that are used extensively by runners [3]. It has been proposed that foot orthoses may be able to attenuate the parameters linked to the etiology of injury in runners, thus they have been cited as a mechanism by which injuries can be prophylactically avoided and also retrospectively treated [4]. The majority of research investigating the biomechanical effects of foot orthoses during running has examined either impact loading or rearfoot eversion parameters which have been linked to the etiology of running injuries. Sinclair et al, [5] showed that an off the shelf orthotic device significantly reduced vertical rates of loading and axial tibial accelerations, but did not alter the magnitude of rearfoot eversion. Butler et al, [6] examined three-dimensional (3D) kinematic/ kinetic data alongside axial tibial accelerations during running, using dual-purpose and a rigid orthoses. Their findings revealed that none of the experimental parameters were differed significantly between the different orthotic conditions.  Laughton et al, [7] showed that foot orthoses significantly reduced the loading rate of the vertical ground reaction force but did not significantly influence rearfoot eversion parameters. Dixon, [8] examined the influence of off the shelf foot orthoses placed inside an military boot on kinetic and 3D kinematic parameters during running. The findings from this investigation revealed that the orthotic device significantly reduced the vertical rate of loading, but no alterations in ankle eversion were reported.

Further to this, because the mechanics of the foot alter the kinetics/kinematics of the proximal lower extremity joints, biomechanical control of the foot with in-shoe orthotic wedges has wide-ranging applications for the treatment of a variety chronic lower extremity conditions. Different combinations of wedges or posts have therefore been used in clinical practice/ research to treat a multitude of chronic pathologies [9]. Both valgus (lateral) and varus (medial) orthoses have been proposed as potentially important low-cost devices for the conservative management of chronic pathologies [10].

Lateral orthoses are utilized extensively in order to reduce the loads experienced by the medial tibiofemoral compartment [10]. Lateral orthoses cause the center of pressure to shift medially thereby moving the medial-lateral ground reaction force vector closer to the knee joint center [11]. This serves to reduce the magnitude of the knee adduction moment which is indicative of compressive loading of the medial aspect of the tibiofemoral joint and its progressive degeneration [12]. Kakihana et al, investigated the biomechanical effects of lateral wedge orthoses on knee joint moments during gait in elderly participants with and without knee osteoarthritis [13]. The lateral wedge significantly reduced the knee adduction moment in both groups when compared with no wedge. Butler et al, examined the effects of a laterally wedged foot orthosis on knee mechanics in patients with medial knee osteoarthritis [14]. The laterally wedged orthotic device significantly reduced the peak adduction moment and also the knee adduction excursion from heel strike to peak adduction compared to the non-wedged device. Kakihana et al, examined the kinematic and kinetic effects of a lateral wedge insole on knee joint mechanics during gait in healthy adults [15]. The wedged insole significantly reduced the knee adduction moment during gait in comparison to the no-wedge condition, although no changes in knee kinematics were evident.

The influence of medially oriented foot orthoses has also been frequently explored in biomechanical literature. Boldt et al, examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome [16]. The findings from this study showed that the peak knee adduction moment increased and hip adduction excursion decreased significantly when wearing medially wedged foot orthoses. Sinclair et al.,  explored the effects of medial foot orthoses on patellofemoral stress during the stance phase of running using a musculoskeletal modelling approach [17]. Their findings showed that medial foot orthoses significantly reduced peak patellofemoral stress loading at this joint during running.

Although the effects of medial/lateral foot orthoses have been explored previously, they have habitually been examined during walking in pathological patients and thus their potential prophylactic effects on the kinetics and tibiocalcaneal kinematics of running have yet to be examined. Therefore, the aim of the current investigation was to examine the effects of foot orthotic devices with a 5° medial and lateral wedge on kinetics and tibiocalcaneal kinematics the during the stance phase of running. A clinical investigation of this nature may provide further insight into the potential efficacy of wedged foot orthoses for the prevention of chronic running injuries.



Twelve male runners (age 26.23 ± 5.76 years, height 1.79 ± 0.11 cm and body mass 73.22 ± 6.87 kg) volunteered to take part in this study. All runners were free from musculoskeletal pathology at the time of data collection and were not currently taking any medications. The participants provided written informed consent in accordance with the principles outlined in the Declaration of Helsinki. The procedure utilized for this investigation was approved by the University of Central Lancashire, Science, Technology, Engineering and Mathematics, ethical committee.


Commercially available orthotics (Slimflex Simple, High Density, Full Length, Algeos UK) were examined in the current investigation. The orthoses were made from Ethylene-vinyl acetate and had a shore A rating of 65. The orthoses were able to be modified to either a 5˚ varus or valgus configuration which spanned the full length of the device. The order that participants ran in each orthotic condition was counterbalanced.


Participants completed five running trials at 4.0 m/s ± 5%. The participants struck an embedded piezoelectric force platform (Kistler Instruments, Model 9281CA) sampling at 1000 Hz with their right foot. Running velocity was monitored using infrared timing gates (SmartSpeed Ltd UK). The stance phase of the running cycle was delineated as the time over which > 20 N vertical force was applied to the force platform. Kinematic information was collected using an eight-camera optoelectric motion capture system with a capture frequency of 250 Hz. Synchronized kinematic and ground reaction force data were obtained using Qualisys track manager software (Qualisys Medical AB, Goteburg, Sweden).

The calibrated anatomical systems technique (CAST) was utilized to quantify tibiocalcaneal kinematics (18). To define the anatomical frames of the right foot, and shank, retroreflective markers were positioned onto the calcaneus, first and fifth metatarsal heads, medial and lateral malleoli, medial and lateral epicondyle of the femur. A carbon fiber tracking cluster was attached to the shank segment. The foot was tracked using the calcaneus, and first and fifth metatarsal markers. Static calibration trials were obtained with the participant in the anatomical position in order for the positions of the anatomical markers to be referenced in relation to the tracking clusters/markers.

Tibial accelerations were measured using an accelerometer (Biometrics ACL 300, Units 25-26 Nine Mile Point Ind. Est. Cwmfelinfach, Gwent United Kingdom) sampling at 1000 Hz. The device was attached to the tibia 0.08 m above the medial malleolus in alignment with its longitudinal axis (19). Strong adhesive tape was placed over the device and the lower leg to prevent artifact in the acceleration signal.


The running trials were digitized using Qualisys Track Manager (Qualysis, Sweden) and then exported as C3D files. Kinematic parameters were quantified using Visual 3-D software (C-Motion, USA) after the marker data was smoothed using a low-pass Butterworth 4th order zero-lag filter at a cutoff frequency of 12 Hz. Three-dimensional kinematic parameters were calculated using an XYZ cardan sequence of rotations where X represents the sagittal plane, Y represents the coronal plane and Z represents the transverse plane rotations (Sinclair et al., 2013). Trials were normalized to 100% of the stance phase then processed and averaged. In accordance with previous studies, the foot segment coordinate system was referenced to the tibial segment for ankle kinematics, whilst tibial internal rotation (TIR) was measured as a function of the tibial coordinate system in relation to the foot coordinate axes [21]. The 3-D kinematic tibiocalcaneal measures which were extracted for statistical analysis were: (1) angle at foot strike, (2) peak angle during stance and (3) relative range of motion (ROM) from footstrike to peak angle.

The tibial acceleration signal was filtered using a 60 Hz Butterworth zero lag 4th order low pass filter to prevent any resonance effects on the acceleration signal. Peak tibial acceleration (g) was defined as the highest positive axial acceleration peak measured during the stance phase. Average tibial acceleration slope (g/s) was quantified by dividing peak tibial acceleration by the time taken from footstrike to peak tibial acceleration and instantaneous tibial acceleration slope (g/s) was quantified as the maximum increase in acceleration between frequency intervals. From the force platform all parameters were normalized by dividing the net values by body weight. Instantaneous loading rate (BW/s) was calculated as the maximum increase in vertical force between adjacent data points.

Statistical analyses

Means, standard deviations and 95 % confidence intervals were calculated for each outcome measure for all orthotic conditions. Differences in kinetic and tibiocalcaneal kinematic parameters between orthoses were examined using one-way repeated measures ANOVAs, with significance accepted at the P≤0.05 level. Effect sizes were calculated using partial eta2 (pη2). Post-hoc pairwise comparisons were conducted on all significant main effects. The data was screened for normality using a Shapiro-Wilk which confirmed that the normality assumption was met. All statistical actions were conducted using SPSS v23.0 (SPSS Inc., Chicago, USA).


Tables 1-3 and Figure 1 present differences in kinetics and tibiocalcaneal kinematics as a function of the different orthoses. The results indicate that the experimental orthoses significantly affected orthoses tibiocalcaneal kinematic parameters.

Medial Lateral No-orthotic
Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper)
Coronal plane (+ = inversion & – = eversion)
 Angle at footstrike (°) -3.98 5.65 -7.57 -0.39 -3.77 5.64 -7.35 -0.19 -0.66 5.91 -4.41 3.09
 Peak eversion (°) -10.75 5.7 -14.38 -7.13 -14.11 6.48 -18.22 -9.99 -12.37 5.43 -15.82 -8.92
 Relative ROM (°) 6.77 2.78 5.00 8.54 10.34 3.44 8.15 12.53 11.71 3.26 9.64 13.78
Transverse plane (+ = external & – = internal)
 Angle at footstrike (°) -11.78 2.72 -13.51 -10.05 -15.01 2.81 -16.80 -13.22 -14.41 2.97 -16.29 -12.52
 Peak rotation (°) -6.80 3.10 -8.78 -4.83 -5.6 3.94 -8.10 -3.09 -5.05 3.33 -7.17 -2.93
 Relative ROM (°) 4.97 0.86 4.43 5.52 9.41 1.33 8.56 10.26 9.35 1.44 8.44 10.27

Table 1 Ankle kinematics (mean, SD & 95% CI) in the coronal and transverse planes as a function of the different orthotic conditions.

Medial Lateral No-orthotic
Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper)
Transverse plane (+ =  internal & – =external)
 Angle at footstrike (°) 8.57 3.16 6.56 10.57 9.74 4.01 7.20 12.29 6.51 3.98 3.98 9.04
 Peak TIR (°) 13.54 4.28 10.82 16.27 15.89 5.65 12.30 19.48 13.98 4.58 11.07 16.89
 Relative ROM (°) 4.98 2.68 3.28 6.68 6.14 3.54 3.89 8.39 7.47 3.75 5.09 9.85

Table 2 Tibial internal rotation parameters (mean, SD & 95% CI) as a function of the different orthotic conditions.

Medial Lateral No-orthotic
Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper) Mean SD 95% CI (Lower) 95% CI (Upper)
Peak tibial acceleration (g) 9.83 4.50 6.98 12.69 9.97 4.88 6.87 13.07 9.41 4.76 6.38 12.44
Average tibial acceleration slope (g/s) 362.73 196.31 238.01 487.46 367.37 219.63 227.83 506.91 369.52 257.85 205.69 533.35
Instantaneous tibial acceleration slope (g/s) 866.20 459.40 574.31 1158.09 867.71 554.16 515.61 1219.81 776.85 529.86 440.20 1113.51
Instantaneous load rate (BW/s) 156.17 58.72 118.86 193.48 161.77 71.57 116.30 207.25 134.49 44.62 106.14 162.84

Table 3 Kinetic and tibial acceleration parameters (mean, SD & 95% CI) as a function of the different orthotic conditions.

Figure 1 Tibiocalcaneal kinematics as a function of the different orthotic conditions; a= ankle coronal plane angle, b= ankle transverse plane angle & c = tibial internal rotation, (black = lateral, dash = medial & grey = no-orthotic), (IN = inversion, EXT = external & INT = internal).

Kinetics and tibial accelerations

No significant (P>0.05) differences in kinetics/tibial acceleration parameters were observed between orthotic conditions.

Tibiocalcaneal kinematics

In the coronal plane a significant main effect (F (2, 22) = 25.58, P<0.05, pη2 = 0.70) was found for the magnitude of peak eversion. Post-hoc pairwise comparisons showed that peak eversion was significantly larger in the lateral in relation to the medial (P=0.0000007) and no-orthotic (P=0.01) conditions. In addition, it was also revealed that peak eversion was significantly greater in the no-orthotic (P=0.008) in comparison to the medial orthotic condition. In addition, a significant main effect (F (2, 22) = 25.58, P<0.05, pη2 = 0.74) was noted for relative eversion ROM. Post-hoc pairwise comparisons showed that relative eversion ROM was significantly larger in the lateral (P=0.0000006) and no-orthotic (P=0.00001) in relation to the medial condition.

In the transverse plane a significant main effect (F (2, 22) = 116.11, P<0.05, pη2 = 0.91) was noted for relative transverse plane ankle ROM. Post-hoc pairwise comparisons showed that relative transverse plane ankle ROM was significantly larger in the lateral (P=0.0000001) and no-orthotic (P=0.0000008) in relation to the medial condition.

In addition, a significant main effect (F (2, 22) = 5.99, P<0.05, pη2 = 0.36) was found for the magnitude of peak TIR. Post-hoc pairwise comparisons showed that peak TIR was significantly larger in the lateral in relation to the medial (P=0.007) and no-orthotic (P=0.025) conditions. Finally, a significant main effect (F (2, 22) = 7.55, P<0.05, pη2 = 0.41) was noted for relative TIR ROM. Post-hoc pairwise comparisons showed that relative TIR ROM was significantly larger in the lateral (P=0.04) and no-orthotic (P=0.007) in relation to the medial condition.


The aim of the current investigation was to examine the effects of foot orthotic devices with a 5° medial and lateral wedge on kinetics and tibiocalcaneal kinematics the during the stance phase of running. This is, to the authors’ knowledge, the first investigation to concurrently examine the influence of different orthotic wedge configurations on the biomechanics of running. An investigation of this nature may, therefore, provide further insight into the potential prophylactic efficacy of wedged foot orthoses for the prevention of chronic running injuries.

The current study importantly confirmed that no significant differences in impact loading or axial tibial accelerations were evident as a function of the experimental orthotic conditions. This observation opposes those of Sinclair et al., Laughton et al. and Dixon, who demonstrated that foot orthoses significantly reduced the magnitude of axial impact loading during the stance phase of running [5,7,8]. However, the findings are in agreement with those noted by Butler et al,  who similarly observed that the magnitude of axial impact loading did not differ significantly whilst wearing rigid orthoses [6]. Although not all of the aforementioned investigations have published hardness ratings, at a shore A grade of 65 it is likely that the orthoses examined in the current explanation were more rigid than those utilized by Sinclair et al., Laughton et al. and Dixon [5,7,8]. It is proposed that the divergence between investigations relates to differences in hardness characteristics of the experimental orthoses. The magnitude of impact loading is governed by the rate of change in momentum of the decelerating limb as the foot strikes the ground [22]; as such, it appears that the orthoses examined in this analysis were not sufficiently compliant to provide any reduction in impact loading.

Of further importance to the current investigation is that the medial orthoses significantly reduced eversion and TIR parameters in relation to the lateral and no-orthotic conditions. It is likely that this observation relates to the mechanical properties of the medial wedge which is designed specifically to rotate the foot segment into a more inverted position. This finding has potential clinical significance as excessive rearfoot eversion and associated TIR parameters are implicated in the etiology of a number of overuse injuries such as tibial stress syndrome, plantar fasciitis, patellofemoral syndrome and iliotibial band syndrome [23-25]. This observation therefore suggests that medial orthoses may be important for the prophylactic attenuation of chronic running related to excessive eversion/ TIR.

The findings from the current study importantly show that whilst lateral orthoses are effective in attenuating pain symptoms [9] and reducing the magnitude of the external knee adduction moment [13-15] in patients with medial compartment tibiofemoral osteoarthritis, they may concurrently place runners at risk from chronic pathologies distinct from the medial aspect of the tibiofemoral joint. It appears based on the findings from the current investigation that caution should be exercised when prescribing lateral wedge orthoses without a thorough assessment of the runners’ individual characteristics.  

A limitation, in relation to the current investigation, is that only the acute effects of the wedged insoles were examined. Therefore, although the medial orthoses appear to prophylactically attenuate tibiocalcaneal risk factors linked to the etiology of injuries, it is currently unknown whether this will prevent or delay the initiation of injury symptoms. Furthermore, the duration over which the orthoses would need to be utilized in order to mediate a clinically meaningful change in patients is also not currently known. A longitudinal examination of medial/lateral orthoses in runners would therefore be of practical and clinical relevance in the future. A further potential limitation is that only male runners were examined as part of the current investigation. Females are known to exhibit distinct tibiocalcaneal kinematics when compared to male recreational runners, with females being associated with significantly greater eversion and TIR parameters compared to males [26]. Furthermore, females are renowned for being at increased risk from tibiofemoral joint degeneration in comparison to males [27], and experimental findings have shown that degeneration may also be more prominent at different anatomical aspects of the knee in females in relation to males [28]. This suggests that the requirements of females, in terms of wedged orthotic intervention, may differ from those of male runners, thus it would be prudent for future biomechanical investigations to repeat the current study using a female sample.

In conclusion, despite the fact that the biomechanical effects of wedged foot orthoses have been examined previously, current knowledge with regards to the effects of medial and lateral orthoses on the kinetics and tibiocalcaneal kinematics of running have yet to be explored. This study adds to the current literature in the field of biomechanics by giving a comprehensive comparative examination of kinetic and tibiocalcaneal kinematic parameters during the stance phase of running whilst wearing medial and lateral orthoses. The current investigation importantly showed that medial orthoses significantly attenuated eversion and TIR parameters in relation to the lateral and no-orthotic conditions. The findings from this study indicate therefore that medial orthoses may be effective in attenuating tibiocalcaneal kinematic risk factors linked to the etiology of chronic pathologies in runners.


  1. Lee, D.C., Pate, R.R., Lavie, C.J., Sui, X., Church, T.S., Blair S.N. (2014). Leisure-time running reduces all-cause and cardiovascular mortality risk. Journal of the American College of Cardiology. 64, 472-481.
  2. van Gent, B.R., Siem, D.D., van Middelkoop, M., van Os, T.A., Bierma-Zeinstra, S.S., Koes, B.B. (2007). Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. British Journal of Sports Medicine. 41, 469-480.
  3. McMillan, A., Payne, C. (2008). Effect of foot orthoses on lower extremity kinetics during running: a systematic literature review. Journal of Foot and Ankle Research. 13, 1-13.
  4. Mills, K., Blanch, P., Chapman, A. R., McPoil, T. G., Vicenzino, B. (2010). Foot orthoses and gait: a systematic review and meta-analysis of literature pertaining to potential mechanisms. British Journal of Sports Medicine, 44, 1035-1046.
  5. Sinclair, J., Isherwood, J., Taylor, P.J. (2014). Effects of foot orthoses on kinetics and tibiocalcaneal kinematics in recreational runners. Foot and Ankle Online Journal, 7, 3-11.
  6. Butler, R. J., Davis, I. M., Laughton, C. M., Hughes, M. (2003). Dual-function foot orthosis: effect on shock and control of rearfoot motion. Foot & ankle international, 24, 410-414.
  7. Laughton, C. A., Davis, I. M., Hamill, J. (2003). Effect of strike pattern and orthotic intervention on tibial shock during running. Journal of Applied Biomechanics, 19, 153-168.
  8. Dixon, S.J. (2007). Influence of a commercially available orthotic device on rearfoot eversion and vertical ground reaction force when running in military footwear. Military medicine, 172, 446-450.
  9. Parkes, M. J., Maricar, N., Lunt, M., LaValley, M. P., Jones, R. K., Segal, N. A., Felson, D. T. (2013). Lateral wedge insoles as a conservative treatment for pain in patients with medial knee osteoarthritis: a meta-analysis. JAMA, 310, 722-730.
  10. Reilly, K. A., Barker, K. L., Shamley, D. (2006). A systematic review of lateral wedge orthotics-how useful are they in the management of medial compartment osteoarthritis?. The Knee, 13, 177-183.
  11. Rafiaee, M., Karimi, M. T. (2012). The effects of various kinds of lateral wedge insoles on performance of individuals with knee joint osteoarthritis. International Journal of Preventive Medicine, 3, 693-698.
  12. Birmingham, T.B., Hunt, M.A., Jones, I.C., Jenkyn, T.R., Giffin, J.R. (2007). Test–retest reliability of the peak knee adduction moment during walking in patients with medial compartment knee osteoarthritis. Arthritis Care & Research. 57, 1012-1017.
  13. Kakihana, W., Torii, S., Akai, M., Nakazawa, K., Fukano, M., Naito, K. (2005). Effect of a lateral wedge on joint moments during gait in subjects with recurrent ankle sprain. American Journal of Physical Medicine & Rehabilitation, 84, 858-864.
  14. Butler, R. J., Marchesi, S., Royer, T., Davis, I. S. (2007). The effect of a subject‐specific amount of lateral wedge on knee mechanics in patients with medial knee osteoarthritis. Journal of Orthopaedic Research, 25, 1121-1127.
  15. Kakihana, W., Akai, M., Yamasaki, N., Takashima, T., Nakazawa, K. (2004). Changes of joint moments in the gait of normal subjects wearing laterally wedged insoles. American Journal of Physical Medicine & Rehabilitation, 83, 273-278.
  16. Boldt, A.R., Willson, J.D., Barrios, J.A., Kernozek, T.W. (2013). Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome. Journal of Applied Biomechanics. 29, 68-77.
  17. Sinclair, J., Vincent, H., Selfe, J., Atkins, S., Taylor, P.J., Richards, J. (2015). Effects of foot orthoses on patellofemoral load in recreational runners. Foot and Ankle Online Journal, 8, 5-12.
  18. Cappozzo, A., Catani, F., Leardini, A., Benedeti, M.G., Della, C.U. (1995). Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clinical Biomechanics, 10, 171-178.
  19. Sinclair, J., Bottoms, L., Taylor, K., Greenhalgh, A. (2010). Tibial shock measured during the fencing lunge: the influence of footwear. Sports Biomechanics, 9, 65-71.
  20. Sinclair, J., Taylor, P.J., Edmundson, C.J., Brooks, D., Hobbs, S.J. (2013). Influence of the helical and six available Cardan sequences on 3D ankle joint kinematic parameters. Sports Biomechanics, 11, 430-437.
  21. Eslami, M., Begon, M., Farahpour, N., Allard, P. (200). Forefoot–rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running. Clinical Biomechanics, 22, 74-80.
  22. Whittle, M.W. (1999). Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait & posture, 10, 264-267.
  23. Viitasalo, J.T., Kvist, M. (1983). Some biomechanical aspects of the foot and ankle in athletes with and without shin splints. The American Journal of Sports Medicine, 11, 125-130.
  24. Lee, S.Y., Hertel, J., Lee, S.C. (2010). Rearfoot eversion has indirect effects on plantar fascia tension by changing the amount of arch collapse. The Foot, 20, 64-70.
  25. Barton, C. J., Levinger, P., Menz, H. B., Webster, K. E. (2009). Kinematic gait characteristics associated with patellofemoral pain syndrome: a systematic review. Gait & posture, 30, 405-416.
  26. Sinclair, J., Taylor, P. J. (2014). Sex differences in tibiocalcaneal kinematics. Human Movement, 15, 105-109.
  27. Hame, S.L., Alexander, R.A. (2013). Knee osteoarthritis in women. Current Reviews in Musculoskeletal Medicine. 6, 182-187.
  28. Hanna, F.S., Teichtahl, A.J., Wluka, A.E., Wang, Y., Urquhart, D.M., English, D.R., Cicuttini, F.M. (2009). Women have increased rates of cartilage loss and progression of cartilage defects at the knee than men: a gender study of adults without clinical knee osteoarthritis. Menopause. 16, 666-670.

Fall 2017

Issue 10 (3), 2017

Foot anthropometrics in individuals with diabetes compared with the general Swedish population: Implications for shoe design
by Ulla Hellstrand Tang , Jacqueline Siegenthaler, Kerstin Hagberg, Jon Karlsson, Roy Tranberg

Osteochondromas of the subtalar joint: A case study
by Christopher Gaunder MD, Brandon McKinney DO, Joseph Alderete MD, Thomas Dowd MD

Divergent Lisfranc injury with dislocation of great toe interphalangeal joint: A rare case report
by Dr. Ganesh Singh Dharmshaktu, Dr. Binit Singh

Charcot foot management using MASS posture foot orthotics: A case study
by Edward S. Glaser DPM; David Fleming BS

Surgical treatment of a large plexiform neurofibroma of the lower extremity
by Jacob Jensen, David Shofler, Della Bennett

Staged surgical intervention in the treatment of septic ankle arthritis with autologous circular pillar fibula augmentation: A case report
by Sham J. Persaud DPM, MS; Colin Zdenek DPM; Alan R. Catanzariti DPM

Staged surgical intervention in the treatment of septic ankle arthritis with autologous circular pillar fibula augmentation: A case report

by Sham J. Persaud DPM, MS1*; Colin Zdenek DPM2; Alan R. Catanzariti DPM3

The Foot and Ankle Online Journal 10 (3): 6

Surgical management of chronic septic arthritis of the ankle joint is a challenging problem. Failure to initiate appropriate antibiotic therapy and perform incision and drainage within the first 24 to 48 hours of onset can result in subchondral bone loss and permanent joint dysfunction. Patients with chronic infection are not only at risk for loss of joint function, but also limb loss. This case report presents a staged procedure for limb salvage of patients with chronic septic arthritis of the ankle joint. Our technique includes use of both internal and external fixation, along with infection control and autologous pillar grafts. Though our case study is limited, the results are comparable to previous studies. This approach appears to be reasonable for limb salvage in end-stage degenerative joint disease following septic ankle arthritis.

Keywords: Septic arthritis, ankle, pillar graft, internal fixation, external fixation

ISSN 1941-6806
doi: 10.3827/faoj.2017.1003.0006

1 – West Penn Hospital, The Foot and Ankle Institute, Pittsburgh, PA 15224
2 – Silicon Valley Reconstruction Foot and Ankle Fellow, Palo Alta Medical Foundation, Mountain View, CA 94040
3 – Director of the Residency Training Program, West Penn Hospital, The Foot and Ankle Institute, Pittsburgh, PA 15224
* – Corresponding author: Sham Persaud,

Surgical management of chronic septic arthritis of the ankle joint is a challenging problem. Failure to initiate appropriate antibiotic therapy and perform incision and drainage within the first 24 to 48 hours of onset can result in subchondral bone loss and permanent joint dysfunction. Joint function after Staphylococcus aureus (S. aureus) septic arthritis is generally lost 25-50% of the time [1-4]. The mortality rate for septic arthritis has been reported as high as of 10-15% [1-2, 5-8].

Internal ankle arthrodesis techniques are reported to have between 88% to 100% primary fusion rates in patients with aseptic arthritis [9-12]. However the fusion rate for ankle arthrodesis in the setting of sepsis is roughly 71% to 93% [13-19].

Surgical management of septic arthritis requires debridement of all non-viable infected soft tissue and bone in order to eradicate infection [14-15, 20]. In addition to debridement, the use of local antibiotic delivery through polymethylmethacrylate (PMMA) has been shown to be an effective adjunct in treating infection [21-24]. Bactericidal levels of antibiotics from PMMA spacers are achieved through the process of elution where high concentrations of antibiotic are released locally, with minimal systemic effect, and limited risk to the patient. Peak antibiotic concentrations are mostly reached within the first week after placement; however, some studies have shown antibiotics may still be released at effective concentrations even after 4-6 weeks of implantation [25-30].

The use of long term intravenous (IV) or suppressive oral antibiotic therapy in conjunction with debridement is an important part of treatment. A 2-6 week course of IV antibiotic therapy is recommended depending on the severity of the infection and host immunity [14, 15, 20, 31].   

Fixation techniques for arthrodesis of the diseased ankle secondary to septic arthritis have been controversial. External fixation has been shown to provide adequate torsional stability, but is less effective in maintaining sagittal plane stability. On the other hand, internal fixation has been shown to provide excellent sagittal plane stability, but limited torsional stability. [19] Some authors believe a combination of both fixation techniques lead to optimal outcomes [12, 14, 15, 19, 20].

A concern with arthrodesis is following septic arthritis is loss of limb length. Cancellous bone graft has been shown to be effective in aiding with small defects [15, 20, 31]. Free vascularized bone graft has also been shown to be effective with large bony defects [14, 15, 20]. Use of allograft or synthetic bone grafts have rarely been mentioned in the literature [32]. One technique which has been described in aseptic ankle joint arthrodesis is the use of fibular pillar grafts as structural grafts to maintain length [33].

Patients with chronic infection are not only at risk for loss of joint function, but also limb loss. Cierny et al. related a 25% amputation rate for patients with arthrodesis of septic ankle joints [15]. This case report presents a staged procedure for limb salvage of patients with chronic septic arthritis of the ankle joint.

Case Report

A 54-year-old female with chronic right septic ankle arthritis for 6 months presented for evaluation. The patient had undergone arthrocentesis with corticosteroid, I&D with washout and long-term IV antibiotic therapy. She was offered a below knee amputation elsewhere but was reluctant to proceed and sought a second opinion. Her pre-operative radiographs can be seen in Figure 1 A-C and pre-operative MRI may be seen in Figure 2 A-B.  The patient chose to proceed with staged surgical approach for limb salvage.

Figure 1 Pre-operative radiographs; Mortise view, AP view, and Lateral view.

Figure 2 Pre-operative MRI; T1 Sagittal view, T2 Sagittal view.

The patient underwent needle biopsy of the tibia and talus with arthroscopic debridement. Arthroscopy was performed in standard fashion using a 2.7mm 30-degree arthroscope, utilizing a burr and shaver for ankle joint debridement.  Arthroscopic evaluation of the ankle joint revealed destruction of both tibial and talar articular surfaces.  Cartilage of both articular surfaces was degraded and granular in nature.  Cultures recovered S. aureus infection of the tibia.

Thirteen days later, open arthrotomy of the ankle joint with extensive debridement of the tibia and talus, as well as insertion of a Vancomycin cement spacer was performed.  The arthrotomy was performed using a lateral approach with a fibular osteotomy. The fibula was sent for pathology evaluation and culture, which were shown to be free of any bacterial infection.  Debridement was performed through osteotomies of both the tibia and talus which included the articular cartilage and subchondral plate (Figure 3). The joint was then pulse lavaged with 3L of normal saline-bacitracin mixture and a Vancomycin PMMA spacer was placed within the current ankle joint (Figure 4). This was then stabilized with a monolateral external fixator. The patient was placed on 6 weeks of antibiotic therapy by Infectious Disease including IV Cephazolin and PO Rifampin.

Figure 3 Intra-op radiograph status post fibula take down and wide excisional debridement of tibia and talus.

Figure 4 Intra-op radiographs and picture of Vancomycin PMMA spacer.

Ten weeks later, the patient underwent intramedullary (IM) nail tibiotalocalcaneal arthrodesis (TTC) (Figure 5). The original lateral incision was utilized to access the ankle joint.  The Vancomycin spacer was removed and soft-tissue specimens from the tibia and talus, which were sent for frozen section evaluation by pathology, were negative for infection. The bony surfaces were then prepared for arthrodesis in standard fashion using curettes, osteotomes, and drills. The subtalar joint was prepared in a similar fashion. The ankle was grafted with morselized femoral head combined with bone morphogenic proteins to provide osteoconduction and osteoinduction, as well as fibular pillar grafts to provide structural support and maintain length.  Fixation was accomplished with an IM nail. The patient remained non-weight bearing for 3 months.  She was then transitioned into a fracture boot for an additional month and then into a sneaker. No major or minor complications were noted throughout her recovery process. The patient has continued to improve throughout the post-operative course and is able to bear weight without assistance in standard foot gear. Serial radiographs have demonstrated complete union of all involved joints (Figure 6).

Figure 5 Intra-op radiographs (axial view, AP view, and lateral view) of IM nail with fibular pillar grafts.

Figure 6 Final radiographs showing consolidation (AP ankle, oblique ankle, lateral view) of IM nail with fibular pillar grafts.


The fusion rate within the literature varies dramatically. Hawkins showed a variation between 71-94% depending on the control of infection within the joint [13]. Richter also reported a fusion rate of 86.6% for septic ankles [14]. Cierny et al reported results of 83% to 100%. Cierny believed this was secondary to the quality of the surrounding soft tissues. These cases used either external, or hybrid fixation techniques for their fusion [15].

Treatment of S. aureus septic ankle arthritis should include immediate lavage and debridement of the joint with culture and sensitivity driven antibiotic therapy [14, 15, 20].  However, this treatment alone leaves the patient predisposed to continued pain and discomfort secondary to sequela of septic arthritis. Therefore, ankle arthrodesis should be considered as a long-term option following resolution of the infection [4].

External fixation or a hybrid of external and internal fixation has been recommended for arthrodesis following septic ankle arthritis. We used a solitary IM nail for fixation in our cases. Klouche et al. discussed the use of internal fixation in a one-stage procedure using two cross screws through a lateral approach. There technique provided a cure rate of 85% and a consolidation rate of 89.5% at 4.8 months. Empiric antibiotics were administered to all patients and were modified based on culture and sensitivity results obtained at the time of surgery. No local antibiotics were used with their technique [34]. We used IV antibiotics before and after our definitive procedure, as well as, a Vancomycin loaded cement spacer following debridement of the infected bone.

Though our case study is limited, the results have been comparable to previous studies. This approach appears to be reasonable for limb salvage in end-stage degenerative joint disease following septic ankle arthritis. An evidence based study with increased numbers of patients and long term follow up would be beneficial in further accessing this technique for the treatment of septic arthritis of the ankle.



  1. Cooper C, Cawley MID. Bacterial arthritis in an English health district: a 10 year review. Ann Rheum Dis. 1986; 45:458-463.
  2. Peters RHJ, Rasker JJ, Jacobs JWG, Prevo RL, Karthaus RP. Bacterial arthritis in a district hospital. Clin Rheumatol. 1992; 11:351-355.
  3. Youssef PP, York JR. Septic arthritis: a second decade of experience. Aust N Z J Med. 1994; 24:307-311.
  4. Kaandorp CJE, Krunen P, Bernelot Moens HJ, Habbema JDF, Van Schaardenburg D. The outcome of bacterial arthritis: A prospective community-based study. Arthritis Rheum. 1997; 40(5):884-92.
  5. Meijers KAE, Dijkmans BAC, Hermans J, van den Broek PJ, Cats A. Non-gonococcal infectious arthritis: a retrospective study. J Infect. 1987; 14:13-20.
  6. Yu LP, Bradley JD, Hugenberg ST, Brandt KD. Predictors of mortality in non-postoperative patients with septic arthritis. Scand J Rheumatol. 1992; 21:142-144.
  7. Mathews C. J., Weston V. C., Jones A., Field M., Coakley G. Bacterial septic arthritis in adults. The Lancet.2010; 375(9717):846-855.
  8. Miller A, Abduljabbar F, Jarzem P. Polyarticular Septic Arthritis in an Immunocompetent Adult: A Case Report and Review of the Literature. Case Rep Orthop. 2015; 2015:602137.
  9. Scranton PE Jr. Use of internal compression in arthrodesis of the ankle. J Bone Joint Surg Am. 1985; 67:550–555.
  10. Mann RA, Rongstad KM. Arthrodesis of the ankle: a critical analysis. Foot Ankle Int. 1998; 19:3–9.
  11. Zwipp H, Grass R, Rammelt S, Dahlen C. Arthrodesis: non-union of the ankle—arthrodesis failed. Chirurg. 1999; 70:1216–1224.
  12. Kollig E, Esenwein SA, Muhr G, Kutscha-Lissberg F. Fusion of the septic ankle: experience with 15 cases using hybrid external fixation. J Trauma. 2003 Oct;55(4):685-91.
  13. Hawkins BJ, Langerman RJ, Anger DM, Calhoun JH. The Ilizarov technique in ankle fusion. Clin Orthop. 1994; 303:217–225.
  14. Richter D, Hahn MP, Laun RA, Ekkernkamp A, Muhr G, Ostermann PA. Arthrodesis of the infected ankle and subtalar joint: technique, indications, and results of 45 consecutive cases. J Trauma. 1999; 47:1072–1078.
  15. Cierny G III, Cook WG, Mader JT. Ankle arthrodesis in the presence of ongoing sepsis: indications, methods, and results. Orthop Clin North Am. 1989;20:709–721.
  16. Johnson EE, Weltmer J, Lian GJ, Cracchiolo A III. Ilizarov ankle arthrodesis. Clin Orthop. 1992; 280:160–169.
  17. Lonner JH, Koval KJ, Golyakhovsky V, Frankel VH. Posttraumatic nonunion of the distal tibial metaphysis: treatment using the Ilizarov circular external fixator. Am J Orthop. 1995; suppl: 16–21.
  18. Stasikelis PJ, Calhoun JH, Ledbetter BR, Anger DM, Mader JT. Treatment of infected pilon nonunions with small pin fixators. Foot Ankle. 1993; 14:373–379.  
  19. Thordarson DB, Patzakis MJ, Holtom P, Sherman R. Salvage of the septic ankle with concomitant tibial osteomyelitis. Foot Ankle Int. 1997; 18:151–156.  
  20. Cierny G, Zorn EZ. Arthrodesis of the tibiotalar joint for sepsis. Foot Ankle Clin 1996; 1:177– 97.  
  21. Chen NT, Hong HZ, Hooper DC, May JW. The effect of systemic antibiotic and antibiotic impregnated polymethylmethacrylate beads on the bacterial clearance in wounds containing contaminated dead bone. Plastic Reconst Surg 1993; 97(2):1305–11.
  22. Donati D, Biscaglia R. The use of antibiotic impregnated cement in infected reconstructions after resection for bone tumours. J Bone Joint Surg Br 1998; 80(6):1045– 50.
  23. Popham GJ, Mangino P, Seligson D, et al. Antibiotic impregnated beads: Part II: factors in antibiotic selection. Orthop Rev 1991; 20:331–7.
  24. Ostermann PA, Henry SL, Seligson D. The role of local antibiotic therapy in the management of compound fractures. Corr 1993; 295:102– 11.
  25. Antrum RM, Solomkin JS. A review of antibiotic prophylaxis for open fractures. Orthop Rev 1987; 16:81–9.
  26. Eckman JB Jr, Henry SL, Manginio PD, Seligson D. Wound and serum levels of tobramycin with the prophylactic use of tobramycin-impregnated polymethylmethacrylate beads in compound fractures. Clin Orthop 1988; 237:213–5.
  27. Lerner RK, Esterhai JL, Polomono RC, et al. Psychological, functional, and quality of life assessment of patients with posttraumatic fracture nonunion, chronic refractory osteomyelitis, and lower extremity amputation. Arch Phys Rehab 1991; 72:122–6.
  28. Patzakis MJ, Harvey JP Jr, Ivler D. The role of antibiotics in the management of open fractures.   J Bone Joint Surg Am 1974; 56:532– 41.
  29. Schentag JJ, Lasezkay G, Plant ME, et al. Comparative tissue accumulation of gentamycin and tobramycin in patients. J Antimicrob Chemother 1979; 4(SupplA):23–30.
  30. Seligson D, Popham GJ, Voos K, Henry SL, Faghri M. Antibiotic-leaching from polymethylmethacrylate beads. J Bone Joint Surg Am 1993; 75:714– 20.
  31. Stuart MJ, Morrey BF. Arthrodesis of the diabetic neuropathic ankle joint. Clin Orthop 1990; 253:209– 11.  
  32. Esterhai JL Jr, Sennett B, Gelb H, et al. Treatment of chronic osteomyelitis complicating nonunion and segmental defects of the tibia with open cancellous bone graft, posterolateral bone graft, and soft tissue transfer. Trauma 1990; 30:49–54.
  33. Paul J, Barg A, Horisberger M, Herrera M, Henninger HB, Valderrabano V. Ankle salvage surgery with autologous circular pillar fibula augmentation and intramedullary hindfoot nail. J Foot Ankle Surg. 2014 Sep-Oct; 53(5):601-5.
  34. Klouche S, El-Masri F, Graff W, Mamoudy P. Arthrodesis with internal fixation of the infected ankle. J Foot Ankle Surg. 2011 Jan-Feb; 50(1):25-30.

Acknowledgements: None

Conflicts of Interest: None

Communications Author: Sham Persaud

Level of Evidence: Level IV Therapeutic Study

Surgical treatment of a large plexiform neurofibroma of the lower extremity

by Jacob Jensen1, David Shofler2*, Della Bennett3

The Foot and Ankle Online Journal 10 (3): 5

Plexiform neurofibromas are benign nerve tumors occurring in approximately 30% of patients with neurofibromatosis type 1. They develop as neural proliferations of single or multiple nerve fascicles, and are typically highly vascular in nature. In this case report, we describe a 28-year-old male with a paternal family history of neurofibromatosis type 1 and a large plexiform neurofibroma of his left lower extremity present. Following consultation and shared decision-making, the patient underwent surgical debulking primarily to reduce pain, to improve shoe gear fit, and to improve ambulation.  

Keywords: plexiform neurofibromas, neurofibromatosis, surgery

ISSN 1941-6806
doi: 10.3827/faoj.2017.1003.0005

1 – PGY2, Chino Valley Medical Center, Chino, CA
2 – Assistant Professor, Western University of Health Sciences
3 – Gemini Plastic Surgery
* – Corresponding author:

A 28-year-old male with a past medical history of neurofibromatosis type 1 was seen for evaluation and management of a painful mass on his lateral left leg (Figure 1). He was no longer able to wear normal shoes, which in turn affected his activities of daily living. His surgical history included a prior debulking procedure of his left medial leg and foot at the age of 3. His social history included active tobacco use of a ½ pack of cigarettes a day, and had not graduated from high school. The patient related an extensive paternal family history of neurofibromatosis type 1, affecting multiple family members.  He reported a paternal family member passing away from a peritoneal malignancy caused by plexiform transformation into a malignant peripheral nerve sheath tumor.

Figure 1 Preoperative weightbearing and nonweightbearing clinical appearance of the left lower extremity, depicting the large mass.

Preoperative surgical planning included a coordinated effort between podiatric and plastic surgeries.  Surgical and conservative options were discussed in detail with the patient. The elected plan for the surgery was to debulk the lateral leg mass, with the goal of reducing the associated pain and to allow the patient to fit into a shoe. Risks and benefits were discussed in detail with the patient, and the patient was educated regarding the likelihood and speed of mass regrowth.  


The patient underwent surgical debulking as an outpatient. Preoperatively, blood was typed and crossed in anticipation of blood loss secondary to the highly vascular nature of plexiform neurofibromas. A thigh tourniquet was used, and the patient was placed into a lateral decubitus position. A large semi-elliptical incision was utilized, oriented in line with the mass. The mass was identified and carefully dissected, with electrocautery used as necessary. The mass was noted to readily extend through tissue planes, and was not sharply defined. Local neurovascular structures were carefully avoided during dissection of the mass. With direct and unobstructed exposure obtained, the large mass was debulked with representative samples sent to pathology. The mass was noted to extend into the peroneal tendons, lateral ankle ligaments, and the fat pad of the heel; these anatomic structures were carefully preserved during the debulking process.

Following debulking of the mass, the tourniquet was released. Electrocautery was again employed to assist in obtaining hemostasis. Epinephrine soaked gauze was also employed as a hemostatic agent to promote vasoconstriction, further reducing blood loss during dissection. The surgical site was closed in layers, with Floseal hemostatic matrix (Baxter International, Deerfield, Illinois) applied during closure. A passive, closed, surgical drain was inserted prior to skin closure (Figures 2 and 3).

Figure 2 Immediate postoperative image of the left lower extremity following surgical debulking, with the surgical drain visible.

Figure 3 Postoperative image of the left lower extremity at the first postoperative visit, with surgical drain visible.


Neurofibromatosis type I (NF-1), formerly known as Recklinghausen’s or von Recklinghausen disease, is a subtype of neurofibromatosis accounting for 90% of cases [1]. NF-1 is an inherited, autosomal dominant, single-gene disorder of chromosome 17: this non-sense mutation takes place on the NF-1 gene, with a prevalence of 1/3000 births and an equal distribution between males and females [2]. NF-1 usually presents in childhood, and manifestations include café au lait spots, neurofibromas, skeletal dysplasia, and neuropathy secondary to space-occupying neurofibromas [3,4].

Plexiform neurofibromas occur in approximately 30% of the patients with neurofibromatosis type I [5]. Malignant transformation occurs in about 2-16% of cases and is diagnosed with histopathologic biopsy [4,6]. Treatment planning requires consideration of the patient’s goals of treatment, the extent of the deformity, and the presence of malignant transformation.

It is of vital importance to plan preoperatively in order to anticipate the atypical surgical dissection. Surgical time may be longer than anticipated, as anatomic layers will be obscured and violated by the invasive and vascular nature of these masses. Preoperatively, blood should be typed and crossed with the anticipation of significant levels of blood loss. Careful, layered closure should be performed, with the incorporation of hemostatic agents. A closed surgical drain should be considered as well.

Due to the invasive and diffuse invagination of the mass, multiple tissue planes were carefully dissected with the anticipation of overall “debulking” rather that complete marginal resection of the soft tissue mass.

Though rarely encountered, management of large plexiform neurofibromas should include a shared-decision making process and a realistic depiction of the surgical outcome. Operative management should be deferential to the highly vascular and invasive nature of these soft tissue tumors.


  1. Ghalayani P1, Saberi Z, Sardari F. Neurofibromatosis type I (von Recklinghausen’s disease): A family case report and literature review. Dent Res J (Isfahan). 2012 Jul;9(4):483-8.
  2. Evans DG, Howard E, Giblin C, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A. 2010;152A:327–332. 

  3. Hillier JC, Moskovic E. The soft tissue manifestations of neurofibromatosis type 1. Clin Radiol. 2005;60:960–7.
  4. Neurofibromatosis Fact Sheet NINDS, May 2011. NIH Publication No. 11-2126.
  5. Huson SM, Hughes RA. London: Chapman and Hall Medical; 1994. The Neurofibromatosis: A Pathogenetic and Clinical Overview.
  6. Sabatini C, Milani D, Menni F, et al. Treatment of neurofibromatosis type 1. Curr Treat Options Neurol. 2015;17:355. 

Funding Declaration

No funding to report

Conflict of Interest Declaration

No conflict of interest to report

Charcot foot management using MASS posture foot orthotics: A case study

by Edward S. Glaser DPM1; David Fleming BS2*; Barbara Glaser2

The Foot and Ankle Online Journal 10 (3): 4

Background: A 62-year old male being treated for Charcot arthropathy of his right foot at the VA Medical Center in Orlando, FL.  The patient was using a knee walker with a below knee cast at onset of treatment.
Methods:  Custom rocker sole walking boot with built in EVA MASS posture orthotic and MASS orthotic Therapy
Results:  Quality of life improvements.  As the Charcot foot remodeled it coalesced into a foot with an increased medial longitudinal arch allowing for return closer to normal gait and footwear.  No ulcerogenesis was noted with aggressive orthotic therapy.  Protective sensation partially returned to feet bilaterally.
Conclusions:  An increase in patient quality of life without introducing ulcers.   More research needs to be done to determine if this treatment protocol contributes to protective sensation returning to patients with DPN.

Keywords: Charcot foot, diabetic neuropathy, orthoses, MASS Posture

ISSN 1941-6806
doi: 10.3827/faoj.2017.1003.0004

1 – Founder and CEO of Sole Supports, Inc.
2 – Sole Supports, Inc.
* – Corresponding author:

The patient is a 62-year old, well nourished, caucasian male with a 12-year history of Type II Diabetes Mellitus. He has experienced neuropathy for 9 years and for the last 7 years he has been profoundly numb bilaterally distal to the ankle. Following a 10-month period of misdiagnosis, he was diagnosed with Charcot foot on November 18, 2015, at the Orlando VAMC. Podiatric treatment for four months prior consisted of ambulating in a BK cast with a knee walker. Casts were reapplied every 3-4 weeks. During the four months of immobilization, the patient noted considerable atrophy of the right gastroc-soleus muscle and loss of his medial longitudinal arch. The patient’s right foot had become a semi-rigid rocker sole foot (Figure 1).

Figure 1 Rocker sole foot.

When the patient was first seen, insensitivity was confirmed with a Semmes Weinstein 5.07 monofilament test bilaterally. No ulcers were visibly present. The patient’s right foot had significant swelling and the patient had gone from a size 12.5 USA (M) shoe to a size 14 USA (M) shoe prior to casting according to the patient.

To prevent amputation of his foot, a prospective protocol was created as the patient progressed.  If at any time the patient developed an ulcer, the project would have been terminated and traditional care would have resumed.


A Semmes Weinstein 5.07 monofilament was used to determine the patient’s protective sensation.  The locations for monofilament testing were as follows: the plantar aspect of metatarsal heads and distal phalanges 1,3,5. The plantar aspect of the heel, medial arch, and lateral arch. The dorsal aspect of the skin at the base of metatarsal 3, and plantar aspect of the heel, bilaterally [1].

Figure 2 Paper Test shown with MASS Orthotic.

The Paper Test (Figure 2) consisted of the patient weight bearing on the affected foot with a piece of paper placed under both the forefoot and the rearfoot.  The practitioner then attempted to remove the piece of paper by pulling it anteriorly/posteriorly.  If the paper tore then that was a positive result, if the paper slid out it was a negative result.  A positive result meant that part of the foot was providing adequate force to the ground, resulting in the paper being torn.  A negative result meant that part of the foot was not providing adequate force to the ground and slid out un torn.  The paper test was used to determine when it was appropriate to move him from the custom MASS posture rocker sole shoe boot to the MASS orthotic  inside of a diabetic shoe.

Figure 3  Custom walking boot with EVA Shell MASS Posture Orthotic.

Following removal of the  plaster cast, a custom rocker-sole post-op boot with an EVA shell MASS posture orthotic built in (Figure 3) on 1/28/16.  That boot caused irritation and so the design was refined and a new rocker-sole boot with an EVA shell MASS Posture orthotic fitted in the boot (Figure 4) was created and dispensed to patient on 3/4/2016.  The boot (Figure 4) was removed and replaced with a modified golf shoe boot with an EVA shell MASS Posture orthotic fitted into the boot (Figure 5), which was dispensed to the patient on 3/25/2015.  Each change of successive custom boot was modeled from a new, more aggressively captured medial longitudinal arch.  The golf shoe boot (Figure 5) was removed and replaced with an ultrahigh molecular weight polyethylene shell. MASS orthotic (O1) for use with his diabetic shoes.  O1 was dispensed and fitted on 5/6/2016 with use of a full foot lift for his left foot to compensate for the edema on his right foot.   After the edema decreased another MASS orthotic with a polyethylene shell (O2) was dispensed and fitted, for his normal tennis shoes, on 8/25/2016, along with reducing the full foot lift on his left foot.

Figure 4 Refined Custom walking boot with EVA Shell MASS Posture Orthotic.

Figure 5 Modified golf shoe boot with EVA Shell MASS Posture Orthotic.


Our patient initially presented completely insensate with diabetic neuropathy on 1/28/2016.  On 3/25/2016 the patient had regained 6/10 sensation on the right foot and 8/10 on left with the monofilament test.  On 5/6/2016 the patient had a 8/10 sensation on right foot and 10/10 on left.  It should be noted that the patient has been fully compliant keeping his diabetes in control.

Although the patient’s Charcot foot has now fully fused, the foot appears to have remodeled and partially regained the medial longitudinal arch (Figure 6).  The authors believe that this is due, at least in part, to the patient weight bearing in a MASS Posture.  No ulcers developed with the forces applied to the foot.  This is due, at least in part, to the even distribution of body weight across the plantar surface of the foot.  

Figure 6 Clinical view of foot after treatment.

The patient is leading a normal life that includes golf and walking approximating an ideal gait cycle on both hard flat surfaces (hardwood) and uneven flexible surfaces (grass).  


For peripheral neuropathy, it is common conventional wisdom that only the levels of Hgb A1C correlate to the presence of neuropathy.  This particular case, along with previous findings of Michael Graham, suggest that there is a secondary biomechanical etiology that may contribute to Diabetic Peripheral Neuropathy (DPN).  Michael Graham showed that reversing neuropathy could be obtained by reducing tension on the neurovascular bundle and the intracompartmental pressures of the posterior tibial nerve utilizing an extra osseous talotarsal implant [2].  This helps explain why some diabetics with equally poor Hgb A1C’s develop DPN but others do not. The biomechanical factor is postulated to involve the mechanical elongation of the perineurium surrounding the posterior tibial nerve.  As the foot drops in posture, the neurovascular bundle is pulled plantarly increasing tension due to elongation [3].  This may cause the perineurium to compress the nerve while increasing fluid pressure within the sheath, contributing to its loss of function.


The authors postulate that using MASS Posture orthotics in combination with controlling diabetes may prevent or, in some cases reverse, diabetic neuropathy by reposturing the foot and thereby decreasing nerve tension and entrapment while evenly distributing the force from the body across the entire plantar surface of the foot.  Additionally, the authors postulate that it is possible during active Charcot to remodel the medial longitudinal arch closer to an idealized foot posture.  Further research is required with an established protocol prior to treatment with a larger sample size to provide more data to verify results.


  1. Smieja, M., Hunt, D. L., Edelman, D., Etchells, E., Cornuz, J., Simel, D. L. and For The International Cooperative Group for Clinical Examination Research (1999), Clinical Examination for the Detection of Protective Sensation in the Feet of Diabetic Patients. Journal of General Internal Medicine, 14: 418–424. 
  2. Graham ME, Jawrani NT, Goel VK. The Effect of HyProCure® Sinus Tarsi Stent on Tarsal Tunnel Compartment Pressures in Hyperpronating Feet. The Journal of Foot and Ankle Surgery. 2011;50(1):44-49. 
  3. Graham ME, Jawrani NT, Goel VK. Evaluating Plantar Fascia Strain in Hyperpronating Cadaveric Feet Following an Extra-osseous Talotarsal Stabilization Procedure. The Journal of Foot and Ankle Surgery. 2011;50(6):682-686. 

Divergent Lisfranc injury with dislocation of great toe interphalangeal joint: A rare case report

by Dr. Ganesh Singh Dharmshaktu1*, Dr. Binit Singh2

The Foot and Ankle Online Journal 10 (3): 3

Injury to the Lisfranc joint is an uncommon event and requires keen evaluation to diagnose it early for the optimal outcome following adequate treatment. Many classifications describe the divergent pattern of this injury as separate entity and even rarer in incidence. The associated ipsilateral great toe interphalangeal dislocation along with the rare divergent pattern of Lisfranc fracture dislocation makes our case unusual. The case was managed by reduction of the great toe interphalangeal dislocation with percutaneous reduction and fixation of Lisfranc injury with screws and multiple K-wires, resulting in a good clinical outcome on follow up.  No single case similar to ours is reported previously to the best knowledge of the authors.

Keywords: foot, injury, dislocation, Lisfranc joint, tarsometatarsal joint, interphalangeal, management, fixation

ISSN 1941-6806
doi: 10.3827/faoj.2017.1003.0006

1 – Assistant Professor, Department of Orthopaedics, Government Medical College, Haldwani , Uttarakhand. India.
2 – Assistant Professor, Department of Orthopaedics, Government Medical College, Haldwani , Uttarakhand. India.
* – Corresponding author:

IInjury to the Lisfranc joint (Tarsometatarsal joint) is a rare event with reported incidence of 0.1 to 0.4% of fracture cases [1]. Early identification and meticulous management, often surgical, is required for optimal outcome as the conservative approach has been linked to poor results [2]. Quenu and Kuss did instrumental work to highlight the anatomical and clinical understanding of Lisfranc joint along with description of the “Lisfranc ligament bundle” bridging second metatarsal and first cuneiform bone as key stabilizing structure of tarsometatarsal (TMT) joint [3]. The classification given by the same authors is widely used and it describes three types of the injury; homolateral, isolated and divergent. Divergent dislocation was described as a complete disruption of the TMT joint with first ray and lesser rays displaced in the opposite direction. Another classification by Hardcastle et al modified the abovementioned classification on the basis of radiological evaluation into three types – complete, partial and divergent [4]. Type C or divergent variant was noted with medialisation of first metatarsal and lateral translation of variable number of rest of the metatarsals. The literature is scant about this rare pattern of injury as compared to other types.

Case Report

A 28-year-old male patient was brought to us with a history of injury to his right foot a few hours earlier. There was swelling and pain after the patient sustained an injury to the foot by the jumping off a moving bus. He reported he lost his balance and his foot was twisted before he fell to hard ground. The exact position of the foot at the time of impact is not properly recalled by the patient. There was visible deformity over medial aspect of foot and great toe suggesting presence of underlying significant bony or soft tissue injury. The radiograph of the affected foot showed fracture dislocation of Lisfranc joint along with inter-phalangeal dislocation of ipsilateral first toe. The pattern of Lisfranc injury was divergent with medial dislocation of first TMT joint and lateral dislocation of the rest of the TMT joint (Figure 1). There was also a fracture of the fifth metatarsal base with minimal displacement. Following informed consent, the patient was planned for urgent reduction of aforementioned injury with internal fixation. The rarity of the injury pattern was explained to the patient with additional written consent for future publication.

Figure 1 Preoperative radiograph showing great toe interphalangeal dislocation with divergent Lisfranc fracture dislocation.

The closed reduction of the interphalangeal dislocation was easily achieved under anesthesia which was later confirmed under fluoroscopy and the closed reduction of Lisfranc injury was achieved under fluoroscopic guidance. Two K-wires (2.0 mm) were introduced, one along the second metatarsal into the tarsal bones transfixing the Lisfranc joint. The other K-wire (1.0 mm) was introduced along the lateral TMT joints for added stability. The additional cortical screw (3.5 mm) was used for added stability from medial aspect and fixing the Lisfranc joint (Figure 2). The small wounds were dressed and a well-padded below knee plaster protection splint was applied following the confirmation of satisfactory alignment and fixation of the injuries. Elevation and non-weight bearing protocols were advised. Active toe and knee joint range of motion exercises were encouraged throughout the follow up. Gradual healing of the injury was noted in the follow-up along with reduction of swelling, pain and discomfort. The hardware were sequentially removed between 18-26 months postoperatively (Figure 3). The plaster splint was removed after eight weeks as swelling and pain were minimal. The only complication noted was hardware prominence of the medial screw that loosened over time and later was managed by its removal. The removal of K-wires and screw was uneventful at four and six month follow up. There was no re-dislocation of great toe noted and the patient was performing activities of daily living.

Figure 2 Postoperative radiograph showing the fixation of the Lisfranc injury with K-wire and screw from medial aspect along with reduced interphalangeal dislocation.

Figure 3 The follow up radiograph showing healed Lisfranc injury at the time of final hardware removal.


Meticulous clinical and radiological assessment is critical for the diagnosis of Lisfranc injuries as these are notoriously missed in emergency settings and may be the reason for later medico-legal issues [5]. The divergent dislocation, as in our case, have characteristic radiographic deformity that makes it hard to miss and the diagnosis is evident. The divergent Lisfranc fracture dislocation is stated to be associated with fractures of other bones in the foot like the cuneiforms and navicular [6].The subtle injuries, the doubtful diagnosis and the requirement of looking for interposed structure interfering with reduction calls for use of imaging like computerized tomogram (CT) or magnetic resonance imaging (MRI) [7,8]. Our patient refused further imaging due to financial issues and urgent operative intervention was initiated. Open reduction-internal fixation (ORIF) and primary arthrodesis are two common techniques. Our method with use of closed reduction and percutaneous fixation with wires and screws resulted in primary arthrodesis of Lisfranc joint. The reported incidence of secondary procedures for complications has been found to be minimal with primary arthrodesis [9]. Studies have also shown good outcome of primary arthrodesis in comparison with ORIF in the long term [9,10]. Primary arthrodesis also obviates need for secondary arthrodesis in case of arthritis following either modality of treatment. Our minimal invasive approach resulted in early discharge and avoided wound complications.

Acknowledgement None


  1. Court-Brown CM, Caesar B. Epidemiology of adult fractures. A review. Injury, 2006;37(8):691-697. PubMed  
  2. Myerson MS, Fisher RT, Burgess AR, et al. Fracture dislocations of the tarsometatarsal joints: End results correlated with pathology and treatment. Foot Ankle.1986;6(5):225-242. PubMed
  3. Quenu E, Kuss G. Etude sur les subluxations du metatarse (luxations metatarsotarsiennes) du diastasis entre le 1stet le 2nd metatarsien. Rev Chir(Paris).1909; 39:281-336,720-791,1093-1134.
  4. Hardcastle PH, Reschauer R, Kutscha-Lissberg E, et al. Injuries to the tarsometatarsal joint. Incidence, classification and treatment. J Bone Joint Surg Br.1982;64(3):349-346. PubMed
  5. Chesbrough RM. Strategic approach fends off charges of malpractice: Program provides tips for avoiding litigation. Diagn Imaging 2002;24(13):44-51.
  6. Berquist TH, editor. Trauma. Radiology of the Foot and Ankle. New York: Raven Press, 1989. p. 191-7.
  7. Philbin T, Rosenburg G, Sferra JJ. Complications of missed or untreated Lisfranc injuries. Foot Ankle Clin North Am 2003;8:61-71. PubMed
  8. Kiuru MJ, Niva M, Reponen A, Pihlajamaki HK. Bone stress injuries in asymptomatic elite recruits: a clinical and magnetic resonance imaging study. Am J Sports Med. Feb 2005;33(2):272-276.
  9. Henning JA, Jones CB, Sietsema DL, et al. Open reduction internal fixation versus primary arthrodesis for lisfranc injuries: A prospective randomized study. Foot Ankle Int. 2009;30(10):913-922. PubMed
  10. Ly TV, Coetzee JC. Treatment of primarily ligamentous Lisfranc joint injuries: primary arthrodesis compared with open reduction and internal fixation. A prospective randomized study. J Bone Joint Surg Am.2006;88(3):514-520. PubMed

Osteochondromas of the subtalar joint: A case study

by Christopher Gaunder MD, Brandon McKinney DO*, Joseph Alderete MD, Thomas Dowd MD

The Foot and Ankle Online Journal 10 (3): 2

Osteochondromas are benign bone lesions derived from aberrant cartilage. Although osteochondromas represent one of the most common bone lesions, they rarely present in the foot and ankle. We report the case of a patient who presented with osteochondromas originating from the talus and calcaneus, representing a rare case of osteochondromas within the talocalcaneal joint, due to the location of the tumors and proximity of the lesions. After failure of conservative management, this patient underwent surgical excision followed with a planned arthrodesis for symptomatic peroneal impingement and subtalar arthrosis, both likely complications of the osteochondromata. We present this case as an example of the chronic complications associated with osteochondral lesions in hopes of promoting earlier management.

Keywords: osteochondroma, chondroma, talocalcaneal, kissing lesion

ISSN 1941-6806
doi: 10.3827/faoj.2017.1003.0002

1 – San Antonio Military Medical Center (SAMMC) in San Antonio, Texas, United States.
* – Corresponding author:

An osteochondroma is a benign chondrogenic lesion derived from aberrant cartilage. This is a primarily metaphyseal lesion of long bones (distal femur, proximal tibia, proximal humerus) and the pelvis [1,2]. Osteochondroma comprise the most common benign bone tumor and their overall incidence is unknown as many are asymptomatic and only detected once their mass effect manifests as a cosmetic deformity, mechanical symptom or symptom of neurovascular compression [2, 3]. Osteochondromas of the foot and ankle are uncommon except in rare cases of Multiple Hereditary Exostoses. Of these cases, only a few incidents of talar osteochondromas have been reported. To our knowledge, there are no prior reports of osteochondromas in such proximity of the talus and calcaneus [4].

Case Presentation

A 58-year-old female administrator presented with persistent pain at her left hindfoot.  Progressively worsening pain and stiffness over the prior 4-5 months were noted.  Nonoperative modalities such as brace-wear and NSAID use provided limited relief of pain and associated disability. She was unable to perform  High-impact activities and those on uneven ground secondary to pain.  On physical examination, there was near-complete restriction of subtalar motion which was associated with severe pain on active and passive hindfoot inversion and eversion.  She had a mild swelling over the anterolateral and posterolateral aspects of the ankle. Otherwise she demonstrated a benign musculoskeletal exam and was found to be without neurovascular impairment.

Radiographic examination demonstrated complete joint space loss at the posterior subtalar facet with subchondral sclerosis and subchondral cyst formation as well as a large well-circumscribed exostosis posterior to the subtalar joint (Figure 1).  Magnetic resonance imaging demonstrated bony excrescences at the posterior subtalar joint with disruption of the posterior facet articular surfaces. There was also underlying severe bone on bone degenerative change of the posterior facet with associated reactive edema within the talus and calcaneus (Figure 2). A cartilage cap to suggest osteochondroma was not appreciated. Two exostoses were noted to be extending posteriorly from the talus and calcaneus, respectively.  Marrow continuity between talus/calcaneus and their respective prominences was consistent with a presumptive diagnosis of osteochondroma.

Figure 1 Lateral and Mortise views of the left ankle demonstrate severe subtalar joint space narrowing with a well circumscribed pedunculated osseous lesion projecting posteriorly from the subtalar joint.

Figure 2 Sagittal imaging demonstrating a bony protuberance just posterior to the calcaneus with reactive edema about the osteochondroma as well as within the talus and calcaneus consistent with osteoarthritic changes. Axial MRI imaging demonstrates fragmentation within the osteochondroma indicative of two separate, but “kissing” lesions. The coronal image demonstrates the extensive osteoarthritic changes apparent in the subtalar joint of the patient.

Given the advanced nature of the lesion and failure of nonoperative modalities, surgical intervention was proposed. A midline incision was used , splitting the Achilles tendon centrally in a longitudinal fashion.  The mass was identified deep to the FHL with its enveloping bursa (Figure 3). The mass extended from the talus to the calcaneus.  The exostoses were removed at their base to the level of native contours of bone at both the talus and calcaneus (Figure 4). Subsequent inspection of the posterior facet of the subtalar joint demonstrated denuded cartilage with exposed subchondral bone.  Approximately 2mm of subchondral bone was removed.  A narrow osteotome was used to increase the exposed cancellous surface area.  A drill bit (2mm diameter) was used to create several channels between the surface and underlying cancellous bone.  Local autograft was then supplemented with an allograft demineralized bone graft substitute.  In situ compression and fixation was achieved with two 6.5mm partially threaded screws across the subtalar joint (Figure 5).  Histopathology of both specimens revealed linear columns of maturing chondrocytes within a cartilaginous cap and islands of cartilage within the bone of the stalk confirming the diagnosis of talocalcaneal osteochondromas on both sides of the  joint (Figures 6 and 7).  Post operatively the patient was treated with standard  protocol for subtalar joint arthrodesis. She was released to full weight-bearing and regular shoe wear three months from her date of surgery. At six month and one year follow up visits the patient had returned to full activities without difficulty or pain at her left hindfoot.

Figure 3 Intraoperative photo demonstrating the osteochondroma. The Achilles tendon was split longitudinally and retracted. The adjacent osteochondromas were then identified deep to the flexor hallucis longus, which was retracted medially to gain access to the lesions.

Figure 4 Removal of the osteochondromas about the posterior aspect of the subtalar joint with demonstration of exposed subchondral bone.

Figure 5 Lateral view of the left ankle demonstrating postoperative changes with removal of the talocalcaneal osteochondromas and subtalar arthrodesis.

Figure 6 Histopathology revealed cartilaginous island with an active chondrocyte surrounded by osteoid matrix of the attached bony stalk.

Figure 7 Photomicrograph of the cartilaginous cap at the margin of the exostoses demonstrates linear arrangement of active chondrocytes. Note the similar appearance to a normal physis seen in children.


Osteochondromas are the most common benign bone tumor. They comprise 30 to 50% of benign bone lesion diagnoses and 15% of all bone tumors.  They represent a dislocation of growth plate cartilage, where normal longitudinal growth occurs adjacent to centripetal growth of the lesion in the metaphyseal region of bone. After growth plate closure there is typically no further growth of the lesions and the cartilage cap of osteochondroma mature to a maximal thickness of 2mm [5]. If lesions grow in adulthood they usually represent malignant transformation of the cartilage into chondrosarcoma [1, 6, 7]. Most osteochondromas grow from metaphyseal locations away from the adjacent joint. However, Trevor’s disease (Dysplasia Epiphysealis Hemimelica or DEH) or Fairbank’s disease are variants of osteochondromata in which the lesion is intra-articular and grows adjacent to joint cartilage [8].

There are several case reports demonstrating osteochondroma of adjacent metaphyseal regions developing concurrently, eventually leading to “kissing” lesions as the osteochondroma grow [1, 2, 4, 9]. There have also been reports of DEH “kissing” lesions which grow adjacent to an affected joint and lead to pain and presentation in childhood [6]. Osteochondromas have been reported in the literature adjacent to a periosteal chondroma forming a kissing lesion [7].

Most of these lesions present with innocuous swelling or pain, sometimes with movement restriction or mechanical compression. Finally, they can cause intra-articular loose body formation, ankle deformity, peroneal spastic flatfoot, limb length inequality or in adults with secondary arthritis [10].

When identified in a child, conservative management of these uniquely paired osteochondromas or periosteal chondroma is usually advocated, as surgical intervention for asymptomatic, intra-articular lesions may result in secondary arthrosis. Early surgical intervention has been advocated for metaphyseal or juxta-articular lesions to avoid complications with associated growth and deformity. In adults who present with a single osteochondroma, surgery is preferred due to the risk of malignant transformation or growth under a large tendinous sleeve at its metaphyseal insertion when a painful snapping syndrome can develop. One of the peculiarities that can develop in the adult with juxta-articular “kissing” lesions, especially in the lower extremity, is the proclivity towards arthrosis of the involved joint owing to abnormal contact stresses.  This was demonstrated in our patient who had subtalar arthrosis adjacent to peri-articular talar and calcaneal osteochondroma.

She may have had a Trevor’s lesion of the talus adjacent to more common osteochondroma or periosteal chondroma of the calcaneus. We observed joint effusion of the subtalar joint with high signal intensity of the adjacent talar and calcaneal bone identified on T2 and STIR sequencing as well as arthrosis on cartilage sequencing anterior to these lesions, presumably secondary to decreased mobility of the subtalar joint and a shift in the normal mechanical stresses anteriorly.

In our patient’s case, she presented with peroneal impingement and subtalar arthrosis. Thus she underwent excision of osteochondroma and subsequent subtalar fusion. Decompression alone without addressing the arthritis of the patient’s subtalar joint would lead to continued pain and potential need for a second surgical intervention.

We present this case as an illustration of the sequela associated with peri-articular osteochondromata of both the talus and calcaneus in the lower extremity.  We hope understanding the chronic complications associated with these lesions can facilitate earlier management prior to the development of late arthritic changes.


To the best of our knowledge this patient’s presentation represents a unique case of adjacent osteochondromata of the hindfoot that has not been reported previously in the literature. In this case the patient had symptomatic peroneal compression and subtalar arthrosis.  Although malignant degeneration is rare, the patient’s increased age at presentation placed her at higher risk of this complication. Given this risk and the patient’s presentation, surgical intervention was performed.   Awareness of such a case is important to consider when evaluating and treating hindfoot arthritis. This case highlights how careful surgical planning can appropriately evaluate for any malignant transformation while preventing the recurrence of this lesion and mitigating its complications.  

Funding Declaration No funding was acquired for this manuscript.

Conflict of Interest Declaration The authors declare that there is no conflict of interest regarding the publication of this manuscript.


  1. Ahmed AR, Tan TS, Unni KK, Collins MS, Wenger DE, Sim FH. Secondary chondrosarcoma in osteochondroma: report of 107 patients. Clin Orthop 2003 ; 411 : 193-206. (PubMed)
  2. Herrera-Perez M, De Mendoza M, De Bergua-Domingo J, Pais-Brito J. Osteochondromas around the ankle: Report of a case and literature review;  International Journal of Surgery Case Reports 4 (2013) 1025– 1027. (PubMed)
  3. O. Şahap Atik, M.D., Baran Sarıkaya, M.D., Cemalettin Kunat, M.D., Ramin Muradi, M.D., Bahadır Ocaktan, M.D., Hüseyin Topçu, M.D. Osteochondroma of the talus. Joint Diseases and Related Surgery. 2010;21(2):116-117. (Online)
  4. Chou LB, Ho YY, Malawer MM. Tumors of the foot and ankle: experience with 153 cases. Foot Ankle Int 2009;30(9):836–841.4. (PubMed)
  5. Marco RA, Gitelis S, Brebach GT, Healey JH. Cartilage Tumors: Evaluation and Treatment. J Am Acad Orthop Surg 2000;8:292-304. (PubMed)
  6. Murphey MD, Choi JJ, Kransdorf MJ, Flemming DJ, Gannon FH. Imaging of osteochondroma : variants and complications with radiologic-pathologic correlation. Radiographics 2000 ; 20 : 1407-1434. (PubMed)
  7. Wuisman PIJ, Jutte PC, Ozaki T. Secondary chondrosarcoma in osteochondromas:  Medullary extension in 15 of 45 cases. Acta Orthop Scand 1997 ; 68 : 396-400. (PubMed)
  8. Staals EL, Bacchini P, Mercuri M, Bertoni F. Dedifferentiated chondrosarcomas arising in preexisting osteochondromas. J Bone Joint Surg Am. 2007;89(5):987-993. (PubMed)  
  9. Singh R, Jain M, Siwach R, Rohilla S, Sen R, Kaur K. Large para-articular osteochondroma of the knee joint: a case report. Acta Orthop Traumatol Turc. 2012;46(2):139-143. (PubMed)
  10. Blair J, Perdios A, Reilly CW. Peroneal spastic flatfoot caused by a talar osteochondral lesion: a case report. Foot Ankle Int. 2007 Jun;28(6):724-6. (PubMed)