Tag Archives: ankle

Staged surgical intervention in the treatment of septic ankle arthritis with autologous circular pillar fibula augmentation: A case report

by Sham J. Persaud DPM, MS1*; Colin Zdenek DPM2; Alan R. Catanzariti DPM3

The Foot and Ankle Online Journal 10 (3): 6

Surgical management of chronic septic arthritis of the ankle joint is a challenging problem. Failure to initiate appropriate antibiotic therapy and perform incision and drainage within the first 24 to 48 hours of onset can result in subchondral bone loss and permanent joint dysfunction. Patients with chronic infection are not only at risk for loss of joint function, but also limb loss. This case report presents a staged procedure for limb salvage of patients with chronic septic arthritis of the ankle joint. Our technique includes use of both internal and external fixation, along with infection control and autologous pillar grafts. Though our case study is limited, the results are comparable to previous studies. This approach appears to be reasonable for limb salvage in end-stage degenerative joint disease following septic ankle arthritis.

Keywords: Septic arthritis, ankle, pillar graft, internal fixation, external fixation

ISSN 1941-6806
doi: 10.3827/faoj.2017.1003.0006

1 – West Penn Hospital, The Foot and Ankle Institute, Pittsburgh, PA 15224
2 – Silicon Valley Reconstruction Foot and Ankle Fellow, Palo Alta Medical Foundation, Mountain View, CA 94040
3 – Director of the Residency Training Program, West Penn Hospital, The Foot and Ankle Institute, Pittsburgh, PA 15224
* – Corresponding author: Sham Persaud, shamjoseph.persaud@ahn.org


Surgical management of chronic septic arthritis of the ankle joint is a challenging problem. Failure to initiate appropriate antibiotic therapy and perform incision and drainage within the first 24 to 48 hours of onset can result in subchondral bone loss and permanent joint dysfunction. Joint function after Staphylococcus aureus (S. aureus) septic arthritis is generally lost 25-50% of the time [1-4]. The mortality rate for septic arthritis has been reported as high as of 10-15% [1-2, 5-8].

Internal ankle arthrodesis techniques are reported to have between 88% to 100% primary fusion rates in patients with aseptic arthritis [9-12]. However the fusion rate for ankle arthrodesis in the setting of sepsis is roughly 71% to 93% [13-19].

Surgical management of septic arthritis requires debridement of all non-viable infected soft tissue and bone in order to eradicate infection [14-15, 20]. In addition to debridement, the use of local antibiotic delivery through polymethylmethacrylate (PMMA) has been shown to be an effective adjunct in treating infection [21-24]. Bactericidal levels of antibiotics from PMMA spacers are achieved through the process of elution where high concentrations of antibiotic are released locally, with minimal systemic effect, and limited risk to the patient. Peak antibiotic concentrations are mostly reached within the first week after placement; however, some studies have shown antibiotics may still be released at effective concentrations even after 4-6 weeks of implantation [25-30].

The use of long term intravenous (IV) or suppressive oral antibiotic therapy in conjunction with debridement is an important part of treatment. A 2-6 week course of IV antibiotic therapy is recommended depending on the severity of the infection and host immunity [14, 15, 20, 31].   

Fixation techniques for arthrodesis of the diseased ankle secondary to septic arthritis have been controversial. External fixation has been shown to provide adequate torsional stability, but is less effective in maintaining sagittal plane stability. On the other hand, internal fixation has been shown to provide excellent sagittal plane stability, but limited torsional stability. [19] Some authors believe a combination of both fixation techniques lead to optimal outcomes [12, 14, 15, 19, 20].

A concern with arthrodesis is following septic arthritis is loss of limb length. Cancellous bone graft has been shown to be effective in aiding with small defects [15, 20, 31]. Free vascularized bone graft has also been shown to be effective with large bony defects [14, 15, 20]. Use of allograft or synthetic bone grafts have rarely been mentioned in the literature [32]. One technique which has been described in aseptic ankle joint arthrodesis is the use of fibular pillar grafts as structural grafts to maintain length [33].

Patients with chronic infection are not only at risk for loss of joint function, but also limb loss. Cierny et al. related a 25% amputation rate for patients with arthrodesis of septic ankle joints [15]. This case report presents a staged procedure for limb salvage of patients with chronic septic arthritis of the ankle joint.

Case Report

A 54-year-old female with chronic right septic ankle arthritis for 6 months presented for evaluation. The patient had undergone arthrocentesis with corticosteroid, I&D with washout and long-term IV antibiotic therapy. She was offered a below knee amputation elsewhere but was reluctant to proceed and sought a second opinion. Her pre-operative radiographs can be seen in Figure 1 A-C and pre-operative MRI may be seen in Figure 2 A-B.  The patient chose to proceed with staged surgical approach for limb salvage.

Figure 1 Pre-operative radiographs; Mortise view, AP view, and Lateral view.

Figure 2 Pre-operative MRI; T1 Sagittal view, T2 Sagittal view.

The patient underwent needle biopsy of the tibia and talus with arthroscopic debridement. Arthroscopy was performed in standard fashion using a 2.7mm 30-degree arthroscope, utilizing a burr and shaver for ankle joint debridement.  Arthroscopic evaluation of the ankle joint revealed destruction of both tibial and talar articular surfaces.  Cartilage of both articular surfaces was degraded and granular in nature.  Cultures recovered S. aureus infection of the tibia.

Thirteen days later, open arthrotomy of the ankle joint with extensive debridement of the tibia and talus, as well as insertion of a Vancomycin cement spacer was performed.  The arthrotomy was performed using a lateral approach with a fibular osteotomy. The fibula was sent for pathology evaluation and culture, which were shown to be free of any bacterial infection.  Debridement was performed through osteotomies of both the tibia and talus which included the articular cartilage and subchondral plate (Figure 3). The joint was then pulse lavaged with 3L of normal saline-bacitracin mixture and a Vancomycin PMMA spacer was placed within the current ankle joint (Figure 4). This was then stabilized with a monolateral external fixator. The patient was placed on 6 weeks of antibiotic therapy by Infectious Disease including IV Cephazolin and PO Rifampin.

Figure 3 Intra-op radiograph status post fibula take down and wide excisional debridement of tibia and talus.

Figure 4 Intra-op radiographs and picture of Vancomycin PMMA spacer.

Ten weeks later, the patient underwent intramedullary (IM) nail tibiotalocalcaneal arthrodesis (TTC) (Figure 5). The original lateral incision was utilized to access the ankle joint.  The Vancomycin spacer was removed and soft-tissue specimens from the tibia and talus, which were sent for frozen section evaluation by pathology, were negative for infection. The bony surfaces were then prepared for arthrodesis in standard fashion using curettes, osteotomes, and drills. The subtalar joint was prepared in a similar fashion. The ankle was grafted with morselized femoral head combined with bone morphogenic proteins to provide osteoconduction and osteoinduction, as well as fibular pillar grafts to provide structural support and maintain length.  Fixation was accomplished with an IM nail. The patient remained non-weight bearing for 3 months.  She was then transitioned into a fracture boot for an additional month and then into a sneaker. No major or minor complications were noted throughout her recovery process. The patient has continued to improve throughout the post-operative course and is able to bear weight without assistance in standard foot gear. Serial radiographs have demonstrated complete union of all involved joints (Figure 6).

Figure 5 Intra-op radiographs (axial view, AP view, and lateral view) of IM nail with fibular pillar grafts.

Figure 6 Final radiographs showing consolidation (AP ankle, oblique ankle, lateral view) of IM nail with fibular pillar grafts.

Discussion

The fusion rate within the literature varies dramatically. Hawkins showed a variation between 71-94% depending on the control of infection within the joint [13]. Richter also reported a fusion rate of 86.6% for septic ankles [14]. Cierny et al reported results of 83% to 100%. Cierny believed this was secondary to the quality of the surrounding soft tissues. These cases used either external, or hybrid fixation techniques for their fusion [15].

Treatment of S. aureus septic ankle arthritis should include immediate lavage and debridement of the joint with culture and sensitivity driven antibiotic therapy [14, 15, 20].  However, this treatment alone leaves the patient predisposed to continued pain and discomfort secondary to sequela of septic arthritis. Therefore, ankle arthrodesis should be considered as a long-term option following resolution of the infection [4].

External fixation or a hybrid of external and internal fixation has been recommended for arthrodesis following septic ankle arthritis. We used a solitary IM nail for fixation in our cases. Klouche et al. discussed the use of internal fixation in a one-stage procedure using two cross screws through a lateral approach. There technique provided a cure rate of 85% and a consolidation rate of 89.5% at 4.8 months. Empiric antibiotics were administered to all patients and were modified based on culture and sensitivity results obtained at the time of surgery. No local antibiotics were used with their technique [34]. We used IV antibiotics before and after our definitive procedure, as well as, a Vancomycin loaded cement spacer following debridement of the infected bone.

Though our case study is limited, the results have been comparable to previous studies. This approach appears to be reasonable for limb salvage in end-stage degenerative joint disease following septic ankle arthritis. An evidence based study with increased numbers of patients and long term follow up would be beneficial in further accessing this technique for the treatment of septic arthritis of the ankle.

 

References

  1. Cooper C, Cawley MID. Bacterial arthritis in an English health district: a 10 year review. Ann Rheum Dis. 1986; 45:458-463.
  2. Peters RHJ, Rasker JJ, Jacobs JWG, Prevo RL, Karthaus RP. Bacterial arthritis in a district hospital. Clin Rheumatol. 1992; 11:351-355.
  3. Youssef PP, York JR. Septic arthritis: a second decade of experience. Aust N Z J Med. 1994; 24:307-311.
  4. Kaandorp CJE, Krunen P, Bernelot Moens HJ, Habbema JDF, Van Schaardenburg D. The outcome of bacterial arthritis: A prospective community-based study. Arthritis Rheum. 1997; 40(5):884-92.
  5. Meijers KAE, Dijkmans BAC, Hermans J, van den Broek PJ, Cats A. Non-gonococcal infectious arthritis: a retrospective study. J Infect. 1987; 14:13-20.
  6. Yu LP, Bradley JD, Hugenberg ST, Brandt KD. Predictors of mortality in non-postoperative patients with septic arthritis. Scand J Rheumatol. 1992; 21:142-144.
  7. Mathews C. J., Weston V. C., Jones A., Field M., Coakley G. Bacterial septic arthritis in adults. The Lancet.2010; 375(9717):846-855.
  8. Miller A, Abduljabbar F, Jarzem P. Polyarticular Septic Arthritis in an Immunocompetent Adult: A Case Report and Review of the Literature. Case Rep Orthop. 2015; 2015:602137.
  9. Scranton PE Jr. Use of internal compression in arthrodesis of the ankle. J Bone Joint Surg Am. 1985; 67:550–555.
  10. Mann RA, Rongstad KM. Arthrodesis of the ankle: a critical analysis. Foot Ankle Int. 1998; 19:3–9.
  11. Zwipp H, Grass R, Rammelt S, Dahlen C. Arthrodesis: non-union of the ankle—arthrodesis failed. Chirurg. 1999; 70:1216–1224.
  12. Kollig E, Esenwein SA, Muhr G, Kutscha-Lissberg F. Fusion of the septic ankle: experience with 15 cases using hybrid external fixation. J Trauma. 2003 Oct;55(4):685-91.
  13. Hawkins BJ, Langerman RJ, Anger DM, Calhoun JH. The Ilizarov technique in ankle fusion. Clin Orthop. 1994; 303:217–225.
  14. Richter D, Hahn MP, Laun RA, Ekkernkamp A, Muhr G, Ostermann PA. Arthrodesis of the infected ankle and subtalar joint: technique, indications, and results of 45 consecutive cases. J Trauma. 1999; 47:1072–1078.
  15. Cierny G III, Cook WG, Mader JT. Ankle arthrodesis in the presence of ongoing sepsis: indications, methods, and results. Orthop Clin North Am. 1989;20:709–721.
  16. Johnson EE, Weltmer J, Lian GJ, Cracchiolo A III. Ilizarov ankle arthrodesis. Clin Orthop. 1992; 280:160–169.
  17. Lonner JH, Koval KJ, Golyakhovsky V, Frankel VH. Posttraumatic nonunion of the distal tibial metaphysis: treatment using the Ilizarov circular external fixator. Am J Orthop. 1995; suppl: 16–21.
  18. Stasikelis PJ, Calhoun JH, Ledbetter BR, Anger DM, Mader JT. Treatment of infected pilon nonunions with small pin fixators. Foot Ankle. 1993; 14:373–379.  
  19. Thordarson DB, Patzakis MJ, Holtom P, Sherman R. Salvage of the septic ankle with concomitant tibial osteomyelitis. Foot Ankle Int. 1997; 18:151–156.  
  20. Cierny G, Zorn EZ. Arthrodesis of the tibiotalar joint for sepsis. Foot Ankle Clin 1996; 1:177– 97.  
  21. Chen NT, Hong HZ, Hooper DC, May JW. The effect of systemic antibiotic and antibiotic impregnated polymethylmethacrylate beads on the bacterial clearance in wounds containing contaminated dead bone. Plastic Reconst Surg 1993; 97(2):1305–11.
  22. Donati D, Biscaglia R. The use of antibiotic impregnated cement in infected reconstructions after resection for bone tumours. J Bone Joint Surg Br 1998; 80(6):1045– 50.
  23. Popham GJ, Mangino P, Seligson D, et al. Antibiotic impregnated beads: Part II: factors in antibiotic selection. Orthop Rev 1991; 20:331–7.
  24. Ostermann PA, Henry SL, Seligson D. The role of local antibiotic therapy in the management of compound fractures. Corr 1993; 295:102– 11.
  25. Antrum RM, Solomkin JS. A review of antibiotic prophylaxis for open fractures. Orthop Rev 1987; 16:81–9.
  26. Eckman JB Jr, Henry SL, Manginio PD, Seligson D. Wound and serum levels of tobramycin with the prophylactic use of tobramycin-impregnated polymethylmethacrylate beads in compound fractures. Clin Orthop 1988; 237:213–5.
  27. Lerner RK, Esterhai JL, Polomono RC, et al. Psychological, functional, and quality of life assessment of patients with posttraumatic fracture nonunion, chronic refractory osteomyelitis, and lower extremity amputation. Arch Phys Rehab 1991; 72:122–6.
  28. Patzakis MJ, Harvey JP Jr, Ivler D. The role of antibiotics in the management of open fractures.   J Bone Joint Surg Am 1974; 56:532– 41.
  29. Schentag JJ, Lasezkay G, Plant ME, et al. Comparative tissue accumulation of gentamycin and tobramycin in patients. J Antimicrob Chemother 1979; 4(SupplA):23–30.
  30. Seligson D, Popham GJ, Voos K, Henry SL, Faghri M. Antibiotic-leaching from polymethylmethacrylate beads. J Bone Joint Surg Am 1993; 75:714– 20.
  31. Stuart MJ, Morrey BF. Arthrodesis of the diabetic neuropathic ankle joint. Clin Orthop 1990; 253:209– 11.  
  32. Esterhai JL Jr, Sennett B, Gelb H, et al. Treatment of chronic osteomyelitis complicating nonunion and segmental defects of the tibia with open cancellous bone graft, posterolateral bone graft, and soft tissue transfer. Trauma 1990; 30:49–54.
  33. Paul J, Barg A, Horisberger M, Herrera M, Henninger HB, Valderrabano V. Ankle salvage surgery with autologous circular pillar fibula augmentation and intramedullary hindfoot nail. J Foot Ankle Surg. 2014 Sep-Oct; 53(5):601-5.
  34. Klouche S, El-Masri F, Graff W, Mamoudy P. Arthrodesis with internal fixation of the infected ankle. J Foot Ankle Surg. 2011 Jan-Feb; 50(1):25-30.

Acknowledgements: None

Conflicts of Interest: None

Communications Author: Sham Persaud

Level of Evidence: Level IV Therapeutic Study

Application of the distally pedicled peroneus brevis: Technique, case study, and pearls

by Chad Seidenstricker DPM1, Megan L. Wilder DPM2, Byron L. Hutchinson DPM, FACFAS3pdflrg

Soft tissue defects of the distal leg and hindfoot are difficult to eradicate. Avascular structures become exposed through seemingly superficial wounds rather quickly. The present case describes a surgical technique for the peroneus brevis muscle flap for coverage of a postoperative lateral heel wound following a lateral extensile approach for ORIF of a calcaneal fracture. Nonoperative and operative wound care modalities failed over the course of several years, and a peroneus brevis rotational flap was attempted for wound coverage. Although several minor complications occurred, the wound had successful epithelialization at 3 months. The distally pedicled peroneus brevis muscle flap offers a good option at wound coverage in difficult to heal wounds of the distal leg and hindfoot.  

Key words: muscle flap, peroneus brevis, soft tissue defect, ankle, foot

ISSN 1941-6806
doi: 10.3827/faoj.2016.0903.0003

1 – Podiatry Resident at Swedish Medical Center PGY-3, Seattle, WA
2 – The Everett Clinic, Marysville, WA
3 – Director, Franciscan Foot and Ankle Institute; Medical Director, Foot & Ankle Service, CHI Franciscan Health, Federal Way, WA.
* – Corresponding author: chaddpm14@gmail.com


Soft tissue defects of the foot and ankle present a significant challenge. There is little soft tissue coverage and exposed tendon and bone can easily occur following elective reconstruction or trauma, requiring surgery. Skin grafting is often not an option in this region as bone and tendon are not suitable as a recipient bed. Rotational muscle flap techniques for foot and ankle wound closure are gaining popularity and have proven effective. Muscle flaps offer pliability and can eradicate dead space, can overcome residual bacterial infection in bone, improve blood flow, and will provide a vascular recipient bed for split thickness skin grafting [1]. While negative pressure wound therapy devices are excellent at promoting expedited closure of deep wounds, they should not be placed directly over bone or tendon and especially not in the setting of residual infected tissue.

Indications for rotational muscle flap wound closure may include exposed bone with osteomyelitis, traumatic wounds, non-healing wounds over the lateral ankle and hindfoot after Achilles tendon procedures, surgical wound dehiscence recalcitrant to nonoperative therapies after calcaneal fractures, ankle fractures, and total ankle arthroplasty. In a systematic review, Yu et al, demonstrated a wound complication rate of 13.5% in calcaneal fractures after ORIF [2]. There has been a movement toward minimally invasive techniques, but the lateral extensile incision is still routinely utilized. Raikin et al demonstrated an 8.5% incidence of wound complications following TAR with anterior midline incisional approach that required at least one secondary visit for surgical wound debridement [3]. Wound dehiscence after TAR requires immediate definitive treatment to avoid catastrophic deep space infection.

The distally pedicled peroneus brevis muscle flap offers a relatively simple, reproducible and reliable option for wound closure with complication rate equal or reduced compared to other techniques. In general the muscle flap should not be used as a first line procedure, but is used in limb salvage situations and has very little downside. The peroneus brevis muscle flap also has the advantage of low donor site morbidity and heals with minimal scar.  Lower extremity surgeons can easily perform the peroneus brevis flap closure if it is acceptable in the foot and ankle specialist’s region to perform this type of procedure.

Rationale & Background

Attinger described the role of various intrinsic muscle flaps for small wound closure of the foot and reported a 96% success rate [4]. The abductor hallucis muscle flap has been reported to provide excellent outcomes in plantar heel defects [4,5]. While intrinsic flaps have proven efficacy for small wounds about the foot, they are not sufficient for larger wounds of the hindfoot, ankle and lower leg. Larger wounds in the distal third of the leg and hindfoot are amenable to the peroneus brevis flap. The peroneus brevis muscle is classified as a type IV muscle flap by Mathes and Nahai, which represents a muscle flap with segmental blood supply provided by branches of equal importance (Table 1) [6]. Ensat et al evaluated the blood supply of the peroneus brevis muscle flap identifying constant blood supply by segmental branches of the peroneal and tibial arteries and also supported Yang’s finding of the most distal pedicle being provided between 4-5 centimeters proximal to the tip of the fibula [7,8]. Ensat also recommended a pivot point at least 6-cm above the tip of the fibula to assure there is an intact vascular pedicle, however, this should always be evaluated intraoperatively [7]. The muscle length available for rotation is close to 20-cm, but due to distal flap necrosis, the most proximal 2-cm should always be removed, providing a muscle approximately 18-cm in length [9,10,11].

 

Table 1: Mathes & Nahai [6] classification of muscle and myocutaneous flaps
Type I: One vascular pedicle
Type II: Dominant pedicle(s) and minor pedicle(s)
Type III: Two dominant pedicles
Type IV: Segmental vascular pedicles (ie Peroneus Brevis)
Type V: One dominant pedicle and secondary segmental pedicles

The arc of rotation is determined by the most distal vascular pedicle, which should allow an average of 12-cm from the pivot point.

We present a case in which a chronic lateral heel wound following ORIF of calcaneus was treated successfully with a distally pedicled peroneus brevis flap. Our scenario is similar to Rodriguez who recently reported success of the peroneus brevis flap following wound dehiscence after ORIF of a lateral malleolar fracture with subsequent surgical wound dehiscence [12].

Case report

In this case report, a 63 year old male non-smoker sustained a closed intra-articular calcaneal fracture. The records from previous surgeons were not retrieved so the exact timeline is unknown but the following events occurred over the course of several years prior to his definitive operation and closure. The patient had an ORIF through a lateral extensile approach with dehiscence at the apex of the incision which never fully healed.  He had hardware removal and local wound care which failed. He then had a small rotational flap which failed, followed by an advancement flap which resulted in re-opening of the sinus tract and a chronically draining wound with exposed bone. He presented to a local plastic surgeon for consultation who felt a free flap was not a good option. He then presented to the author’s clinic for a preoperative evaluation.  On arrival to clinic the patient had a small wound at the apex with a sinus tract and suspected osteomyelitis of the lateral calcaneal wall, which was draining minor amounts of serous fluid (Figure 1). A distally pedicled peroneus brevis rotational flap was planned.

1

Figure 1 Chronic lateral hindfoot wound recalcitrant to several operative debridements, antibiotics, local wound care, and local skin flaps.

2

Figure 2 Lateral incision over the fibula, with the peroneus longus retracted inferiorly and the peroneus brevis muscle belly and tendon origin exposed.

Surgical technique

After skin preparation, and exsanguination of the limb, a pneumatic thigh tourniquet was inflated to 350mmHg. An incision was made overlying the lateral heel wound in a curvilinear fashion extending a few centimeters proximally and a few distal to the wound. The scar tissue was bluntly dissected through down to calcaneus, and the skin was elevated in a single layer as a flap. There was a loose portion of cement that was noted in the lateral wall of the calcaneus which had been left from a prior surgery and this was removed.

3

Figure 3 Peroneus longus in the right hand, and peroneus brevis muscle belly held in the left.

4

Figure 4 Peroneus brevis muscle belly being elevated off the fibula, moving proximally.

The calcaneus was debrided to good, healthy bleeding bone that appeared without signs of infection. Attention was then directed to the lateral leg where a standard incision was made as described by Eren [13]. The incision connected with the lateral heel wound incision. The crural fascia overlying the peroneals was incised (Figure 2). The peroneus brevis was followed up its muscle belly proximally until the origin was released (Figure 3,4,5). Segmental pedicles were ligated from proximal to distal until approximately 6-cm proximal to the lateral malleolus.

5

Figure 5 The free peroneus brevis flap, with distal vascular pedicles still in tact.

6

Figure 6 Intraoperative doppler to assure the pedicle is patent to provide blood supply to the brevis muscle.

7

Figure 7 The peroneus brevis muscle flap rotated down, showing adequate length to reach the lateral heel wound.

8

Figure 8 Closure of the harvest site, demonstrating easy closure of the harvest site.

Utilizing ultrasound, a vascular pedicle was identified at this level (Figure 6). Care was taken to not violate the pedicle. The peroneus brevis was folded from proximal to distal into the wound and overlying the exposed calcaneal wound (Figure 7). It was loosely secured in place overlying the lateral wall of the calcaneus. The wound was then closed in layers proximally, leaving the distal wound overlying the lateral wall of the calcaneus open with the muscle flap secured within the wound (Figures 8,9).

An Integra bilayer wound matrix was then placed and trimmed to the appropriate size overlying the muscle flap (Figure 10). It was secured in place around the rim of the wound utilizing staples with a single staple in the middle of the flap. The membrane was then fenestrated to allow drainage. The site was then dressed with negative pressure wound therapy (Figure 11). A monorail external fixator was applied to the medial calcaneus and medial tibia with half pins to establish stability while being able to access the wound for local wound assessment and care in the early wound healing phase (Figure 12). Proper alignment was confirmed under fluoroscopy. Sterile dressings were then applied. Tourniquet was deflated.

9

Figure 9 Closure of the incision along the lateral leg down to the original defect site. The original defect site should be left open, and ideally is covered with a biologic dressing.

10

Figure 10 Securing an Integra graft over the exposed peroneus brevis in the chronic wound site with staples.

11

Figure 11 Wound vac secured over the Integra graft after fenestrating the integra graft.

12

Figure 12 Unilateral External fixator applied to the medial tibia for stabilization of the muscle and the wound to allow for incorporation.

13

Figure 13 Application of STSG roughly 3 weeks after the Integra graft was placed. The silicone layer was removed and the wound was carefully debrided and cleansed prior to application. STSG secured with staples.

14

Figure 14 Healed lateral foot wound.

Follow up care

About 2 weeks later, he presented to the emergency department with fever and chills and was noted to have a pin tract infection, requiring removal of one of the pins in the ED. The following week he returned to the operating room for removal of the external fixator and debridement of a small portion of muscle flap necrosis.  Following debridement, the split-thickness skin graft (STSG) was secured with staples and negative pressure wound therapy was applied (Figure 13). The patient presented to clinic for follow-up seven days post-skin graft application and negative pressure wound therapy was removed. Four days later he returned to clinic and reported a visit to the ED for fever and previous talar pin site irritation and pain with two centimeter diameter of surrounding erythema. He was started on IV rocephin for a few days and then transitioned to a two week course of Keflex. He had resolution of infection. His donor site incision healed without incident. He was discharged with instructions to remain NWB to his surgical limb until complete incorporation of graft, about two months. At final three-month follow-up he had completely healed (Figure 14).

Discussion

There are several key points to discuss regarding this case report. First, there was partial flap necrosis, which required repeat debridement in the OR. For the case presented, the most proximal aspect of the peroneus brevis muscle belly was not debrided, which has been recommended by multiple authors [9,10,11]. Other potential ways to improve wound closure may include the use of bilayer membrane which, after it takes, will provide a superior surface for a STSG. Negative pressure wound therapy can be applied at 50-125mmHg [12]. It has been proposed that higher vacuum settings may be damaging to skin grafts, but this theory was not upheld [13].

Recently it was found that wound vac application at 75mmHg applied for seven days post-operatively significantly reduced partial flap necrosis and skin graft necrosis, and they concluded that prolonging the period of wound vac application may further reduce complications by eliminating shear force, improving neovascularization of the muscle, and reducing edema and venous congestion [14]. There is debate whether to perform the transfer of the brevis through a subcutaneous tunnel or whether to connect the harvesting incision to recipient site. It is not absolutely necessary to connect the incision with the recipient site, but there should not be excessive tension within the subcutaneous tunnel as this may obstruct venous outflow resulting in flap failure. If there is question, one should connect the recipient bed with the donor site incision.  

A few other obstacles occurred which can be avoided. While pin tract infections are common when using external fixators, rarely catastrophic infection develops. Minor infections can be managed with local wound care and oral antibiotics oftentimes. As long as there is not failure at the bone-pin interface with loosening, fracture with nonunion or malunion, or chronic osteomyelitis,  it should not compromise your end result. Placing a unilateral fixator to stabilize the extremity offers several advantages. It offers stability to the extremity and the wound bed in the immediate postoperative phase while also permitting wound care and wound observation for the first few weeks after index surgery. The external fixator can be removed at the three week mark as this is when you can return to the operating room, remove the silicone layer from the bilayer membrane, and harvest and apply the STSG. Other options include applying a posterior splint for immobilization, but this doesn’t offer an easily accessible portal for wound evaluation and wound care and, makes continued care with a wound vac particularly difficult. If the recipient site is prone to shear forces, ie lateral malleolus, be sure to utilize a bulky soft dressing to protect the graft site. Although several publications [14,15] have advocated for single stage procedure, it is prudent to wait for application of the STSG until muscle flap viability is assured. This prevents unnecessary repeat skin grafting.

It has been demonstrated that the peroneus brevis muscle flap provides a reliable means for treating bone infections, providing blood supply, and a suitable recipient bed for skin grafting [1]. Preoperatively the patients should be evaluated for vascular insufficiency. As foot and ankle experts, sacrificing the primary evertor of the foot may seem uncouth, but these are limb salvage situations. One can perform a tenodesis of the the peroneus brevis to the longus to enhance eversion power if it is possible. However, it has been shown that eversion and plantarflexion are maintained following the procedure even without ancillary procedures and patients do not report lateral ankle instability [16]. The donor site is rarely problematic, and can be closed primarily without issue [10-12,16-18].

The peroneus brevis has a consistent blood flow [7,16,17]. The maximum number of vascular pedicles should be maintained as possible, but one can elect to ligate all pedicles leaving only the most distal intact approximately 6-cm proximal to the tip of the fibula. To ensure adequate blood supply will be provided by each successive pedicle, a vascular clip can be placed temporarily to ensure the next pedicle maintains adequate perfusion. Ensat et al demonstrated in a cadaveric model that there were an average of 5.1 segmental branches to the muscle. This included branches from both the peroneal and the anterior tibial artery, however, most branches were derived from the peroneal artery [7]. The most distal vascular branch was derived from the peroneal artery in 100% of cadavers at a distance about 4.3cm proximal to the tip of the lateral malleolus. There is also retrograde flow provided from the posterior tibial artery [7]. This is important in gaining a muscle flap with the most potential length. The pivot point should be at least 6-cm proximal to the lateral malleolus to ensure there is a vascular pedicle attached distally to supply the muscle when performing rotational flaps. The diameter of the pedicle must be at least 0.5mm, while the average size pedicle is 1.1mm this is rarely a problem [7]. The average length of the muscle is 19.8cm, but the most proximal 2-cm should be resected as this area of the graft is expected to undergo necrosis.

In conclusion, many studies have found reliability in this muscle flap. It offers great utility to cover defects in the distal leg and hindfoot. It can cover defects of the anterior ankle, lateral ankle and hindfoot. Despite some authors reporting an unfavorable success rate, the majority of reports found high rates of success and this should be considered in the reconstructive ladder for complex lower extremity wounds [10,11,18,19].

References

  1. Anthony JP, Mathes SJ. Update on chronic osteomyelitis. Clin Plast Surg 1991;18:515-523. PubMed
  2. Yu X, Pang QJ, Chen L, Yang CC, Chen XJ. Postoperative complications after closed calcaneus fracture treated by open reduction and internal fixation: a review. Jour Int Med Research 2013; 42(1):17-25. PubMed
  3. Raikin SM, Kane J, Ciminiello ME. Risk factors for incision-healing complications following total ankle arthroplasty. J Bone Joint Surg 2010; 92 (12):2150-2155. (PubMed
  4. Attinger CE, Ducic I, Cooper P, Zelen CM. The role of intrinsic muscle flaps of the foot for bone coverage in foot and ankle defects in diabetic and nondiabetic patients. Plast Reconstr Surg  2002;110(4):1047-1054. PubMed
  5. Ortak T, Ozdemir R, Ulusoy MG, Tiftikcioglu YO, Karaaslan O, Kocer U, Sensoz O. Reconstruction of heel defects with a proximally based abductor halluces muscle flap. J Foot Ankle Surg 2005; 44(4): 265-270.  PubMed
  6. Mathes SJ, Nahai F. Reconstructive Surgery: Principles, Anatomy, and Technique. New York: Churchill-Livingstone: 1997.
  7. Ensat F, Weitgasser L,Hladik M, Larcher L, Heinrich K, Skreiner A, Russe E, Fuerntrath F, Kamp J, Cotofana S, Wechselberger G. Redefining the vascular anatomy of the peroneus brevis muscle flap. Microsurgery 2015;35:39-44. PubMed
  8. Yang YL, Lin TM, Lee SS, Chang KP, Lai CS. The distally pedicled peroneus brevis muscle flap anatomic studies and clinical applications. J Foot Ankle Surg 2005;44:259-264. PubMed
  9. Hu X, Du W, Chen Z, Li M, Wang C, Shen Y. The application of distally pedicled peroneus brevis muscle flaps and retrograde neurocutaneous accompanying artery flaps for treatment of bony and soft-tissue 3-dimensional defects of the lower leg and foot. Int J Lower Ext Wound 2013;12(1):53-62. PubMed
  10. Ng YH, Chong KW, Tan GM, Rao M. Distally pedicled peroneus brevis muscle flap: a versatile lower leg and foot flap. Singapore Med J 2010; 51(4):339-342. PubMed
  11. Schmidt AB, Giessler GA. The muscular and the new osteomuscular composite peroneus brevis flap: experiences from 109 cases. Plast Reconstr Surg 2010; 126:924-932. PubMed
  12. Rodriguez Collazo ER, Bibbo C, Mechell RJ, Arendt A. The reverse peroneus brevis muscle flap for ankle wound coverage. J Foot Ankle Surg 2013;52:543-546. PubMed
  13. Timmer MS, Le Cessie S, Banwell P, Gukema GN. The effect of varying degrees of pressure delivered by negative-pressure wound therapy on skin perfusion. Ann Plast Surg. 2005;55(6):665-71. PubMed
  14. Erne H, Schmauss D, Schmauss V, Ehrl D. Postoperative negative pressure therapy significantly reduces flap complications in distally pedicled peroneus brevis flaps: experiences from 74 cases. Injury 2016;47:1288-1292. PubMed
  15. Ensat F, Hladik M, Larcher L, Mattassich G, Wechselberger G. The distally based peroneus brevis muscle flap – clinical series and review of the literature. Microsurgery 2013;34:203-208. PubMed
  16. Eren S, hofrani A, Refenrah M. The distally pedicled peroneus brevis muscle flap: a new flap for the lower leg. Plastic Recon Surg 2001;107:1443-1448. PubMed
  17. Lorenzetti F, Lazzeri D, Bonini L, Giannotti G, Piolanti N, Lisanti M, Pantaloni M. Distally based peroneus brevis muscle flap in reconstructive surgery of the lower limb: postoperative ankle function and stability evaluation. J Plast Reconst Aesthet Surg 2010;63:1523-1533. PubMed
  18. Bach AD, Leffler M, Kneser U, Kopp J, Horch RE. The versatility of the distally based peroneus brevis muscle flap in reconstructive surgery of the lower leg. Ann Plast Surg 2007;58:397-404. PubMed
  19. Barr ST, Rowley JM, O’Neill PJ, Barillo DJ, Paulsen SM. How reliable is the distally based peroneus brevis muscle flap. Plast Reconstr Surg 2002;110(1):360-362. PubMed

Novel ankle cast designs with non-toxic material

by Hirsimäki J¹, Lindfors NC², Salo J³pdflrg

The Foot and Ankle Online Journal 7 (4): 5

Foot and ankle immobilization is usually based on circular support, either using casts or boot-like orthoses. Basic requirements for immobilization of the ankle region include reliable support and possibility of full weight bearing during healing. Woodcast® is a novel, freely 3D moldable cast material based on non-toxic components. The material is strong but light weight and can be used as a split or a cast. Our hypothesis was to test in a proof-of-concept type study, whether a new open cast design, leaving the calf area free can be clinically used in ankle immobilization. Thirty patients with an acute ankle fracture or a recently performed ankle arthrodesis were recruited.  Two different types of cast designs were used, one semi-rigid cast and one rigid cast. All fractures and arthrodesis healed well, with no major postoperative complications. Patient satisfaction was high in both groups and slightly higher in the semi-rigid group. This study shows that the ankle area can be immobilized using a novel type of a very light weight Woodcast® material.  By combining soft and hard wood composite materials, an optimal open cast design leaving the calf area free can be performed, allowing full weight bearing and reliable immobilizing of the ankle.

Key words: Ankle, fracture, immobilization, cast, orthosis, wood, orthopaedic equipment, orthopaedic fixation devices

ISSN 1941-6806
doi: 10.3827/faoj.2014.0704.0005

Address correspondence to: ¹Hirsimäki J, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland; Tel: +358 40 753 4415; E-mail: jhirsima@student.uef.fi

² Helsinki University Central Hospital, Department of Orthopaedic and Hand Surgery, Helsinki University, Helsinki, Finland
³ Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland


Immobilisation in fracture treatment has a long history. Fractures have been treated millennia with natural materials such as wood sticks, but it was only until 1852 that Plaster-of-Paris (POP) was first used in fracture treatment. Inorganic calcium based component had been traditionally used in building walls, but it required additional binding material to be used in limb immobilization. Cotton offered this possibility, and it was utilized almost simultaneously by two army doctors, Dutch Antonius Mathysen and Russian Nikolay Pirogov.

It took a long time to get the first commercially available POP on the market (Cellona, Germany 1932). Typically, POP offered sufficient rigidity with relatively thick and heavy layers, allowing at least partial weight bearing. But it was also brittle and did not tolerate water. As a first improvement to POP, fiberglass was introduced to fracture treatment in the 1950s. It is lightweight, rigid or semi-rigid, and tolerates both water and continuous mechanical loading during walking. It is partially moldable with a strong net like support structure as a limiting factor [1-3]. Modern orthopedic plaster casts are commonly based on synthetic plastic that contains up to 25% methylene diphenyl diisocyanate (MDI). Severe issues have been raised in occupational health sector related to use of isocyanates used in modern paints, moldable glues and orthopaedic casting materials like fiberglass and polyurethane [4].

Ankle fractures can be treated in a conservative way when certain criteria are fulfilled. Some centers prefer cast immobilization also after plate fixation, others rely more on ORIF stability and accept functional orthosis or free mobilization. If cast is to be used, it is however of one basic design regardless of material used. The leg and calf area are covered with a circular cast having different additional layers for sufficient stability [5-9]. Different kind of pre-shaped orthosis have come to the market, initially for functional treatment of ankle sprains, and in some studies also for treatment of ankle fractures [10-14].

In 2010, an innovative wood-composite material was introduced for fracture treatment by Onbone Oy, Helsinki, Finland. The Woodcast® material is an ecologically friendly, biodegradable, wood-plastic composite material, with absolutely free three-dimensional (3D) molding properties. Because of its extreme strength and exceptional molding properties, we hypothesized that it could be possible to treat common ankle fractures and postoperative immobilization in ankle arthrodesis with a novel, open cast design. The goal for the cast was to leave the calf area free, and to allow cast removal and reinserting without tools. Absolute requirements were that the new cast design has to be stiff enough to allow full weight bearing.

This proof-of-concept type multicenter trial was conducted in accordance with the ethics principle originating in the latest version of the Declaration of Helsinki, applicable regulatory requirements, including the standards of the International Organization, and Finnish law and regulations. The study protocol was approved by the Ethics Committee of the Helsinki University Central Hospital (HUCH) and informed consent was obtained of the patients. The study was registered at www.clinicaltrials.gov.

Major hypothesis were that novel light weight cast designs could be successful in treatment of ankle fractures and as postoperative supporting device after ankle arthrodesis.

Methods

Casting materials

Woodcast® is a composite of thermoplastic polymer and a woody material approved for clinical use in limb immobilization (European approval in 2010). The material is hard in room and body temperature, but becomes moldable when heated up to +62 oC.  During cooling, it retains moldable down to 45 oC offering extended working time.  When ready, casting hardening can be enhanced with external cooling.  The material is non-toxic, does not release irritant aerosols, and can be handled without protective gloves. It is strongly self-adhesive and slightly adhesive toward padding and bandage materials, but does not attach to skin. It can be composted after use. The Woodcast® materials can be reheated repeatedly without affecting their mechanical properties, and they can be stretched and bent freely in 3D.

Patients

Thirty patients were enrolled in the study. The inclusion criteria were: Finnish or Swedish speaking patient, age between 0-90 years, a non-complicated ankle fracture or a performed elective foot arthrodesis normally requiring cast immobilization. The exclusion criteria were compromised co-operation for any reason, a complicated fracture, other simultaneous or earlier fractures, nerve, vessel or tendon injuries on the index extremity, malignancy and other severe diseases.

Postoperatively the patients were treated with other casting materials for two weeks. After two weeks the postoperative cast was changed either to a Woodcast® semi-rigid ankle cast model (Group 1) or a rigid model (Group 2). The cast technicians were educated for both models and the choice of design depended on the hospital they were working in.

Figure 1. A removable semi-rigid orthosis

Figure 1 A removable semi-rigid orthosis.

The semi-rigid model was made of 80 cm long Woodcast® 2 mm Soft, 40 cm long Woodcast® 4 mm and of a 15 cm peace of Woodcast® 2mm. The Woodcast® 4 mm offers mechanical stability and the Soft product is used to achieve flexibility. The cast material was applied on the anterior part of the extremity leaving the posterior side of the extremity free and then allowed to cool. The cast was then removed and finalized with soft tape around the edges (Figure 1). Padding and Velcro tape were used. During the immobilization period the patients were allowed to remove the cast temporarily.

The rigid cast was made of two 80 cm long Woodcast® 2mm pieces with paddings protecting the skin. A U-shaped casting material was applied from the lateral side, around the heel area and extending to medial side. The other 80 cm piece was cut oblique in two parts and applied anteriorly to stabilize the TC-joint and protect the plantar area during walking (Figure 2).

SONY DSC

Figure 2 A non-removable rigid cast.

Results

All patients completed the study. Thirteen (13/30) patients with ankle fractures were treated with the semi-rigid orthosis (Group 1). In 17/30 cases the rigid cast was used (Group 2) including 10 ankle arthrodesis patients and 7 trauma cases. In Group 1 the average age was 47.5 (the youngest patient being 24, and oldest 66 years old) and in group 2 the average age was 50.1 (the youngest patient being 24, and oldest 76 years old). Applying time was not depended on cast type rather skills of the technician. There were no major difference in immobilization time between Groups 1 and 2 (Table 1).

The orthopedic technicians reported that no primary complications occurred in Group 1, although in one case orthosis soft material broke from the metatarsus area during the last week of immobilization, but didn’t cause complications for the patient. Twelve (12/13) of the patients in Group 1 reported that they removed the orthosis themselves during the immobilization at least once.

Primary complications were reported by technicians in Group 2. Molding the cast was not easy in one case and in six of the cases there were issues applying the cast in correct position because of the multilayer composition. In two of the cases preheating the casting material didn’t occur fast enough.

table1

Table 1 Results of removable semi-rigid orthosis versus non-removable rigid cast.

Patient satisfaction was high in both groups yet superficial skin complications were seen in Group 2. Superficial maceration reported in 6/17 cases, focal compression in the cast 3/17 and 3/17 both simultaneously (Table 1). One rigid cast was changed to the semi-rigid orthosis because of the increased level of moisture in the cast with good results.  There were no skin complications in Group 1. There were no post-operative infections in either of the reported groups.

Discussion

Cast designs used in this study concentrate especially in immobilization of ankle joint and subtalar joint lines. Shortening the distal dimension in the cast gives more freedom to the toes, to the Lisfranc area, and finally to midtarsal Chopart joint line. This more targeted immobilization is possible with the specific material properties, but whether this has an effect on functional recovery remains to be seen in future studies. In acute ankle sprains (grades II & III), functional brace seems to give better outcome than total immobilization of the lower extremity [12,14]. It can be at least assumed that this kind of new material offers possibilities to design functional braces in the near future.

The anteromedial margin of tibia is the area where soft tissue layers are thinnest. This offers a good contact area for bone immobilization, but requires good fitting of cast material. Cast designs used in this study utilize this area as an anchor site for ankle immobilization. Although no direct force measures were included in this study, our emphasis is that this is far more stable than padded circular cast around the whole calf area with soft tissues on the posterior area. No patient had discomfort on this anteromedial area, even with the use of hard material only. The hard version of Woodcast®, 4 mm and 2 mm are extremely stiff and durable materials.  Hard material can be used as an internal support in elastic constructions, but if it is used as the only material attention must be paid on breathability and edges of cast design. Based on our experience in this relative small patient population, skin maceration and compression discomfort can occur in closed cast design. In Group 1, no patients with combined soft and hard material had cast related discomfort. This emphasizes the role of careful cast design, and use of appropriate padding.

The immobilization or the cast itself can cause several complications. Pressure sores are common complications if improper techniques are used. The risk receiving pressure sores increases in patients who suffer from peripheral nerve or vessel disorders. Compartment syndrome may develop due to a too tight cast [15]. Immobilization may also lead to problems such as joint stiffness, muscle atrophy, cartilage degradation, ligament weakening and osteoporosis [9]. Deep venous thrombosis (DVT) is perhaps the most common complication in lower extremity immobilization, with an incidence of 1.1% to 20% in various type of lower limb injuries treated with a circular cast [16]. In this study, no DVT occurred although no prophylactic agents were used. The number of patients in this proof-of-concept study is too low to draw any solid conclusions on this, but it can be assumed that this type of novel cast design leaving the calf muscle area free could even decrease the risk of DVT. If a DVT is suspected, a circular cast has to be removed, but this open design allows ultrasound diagnostics directly with cast on.

Achilles tendon ruptures are prone to wound complications [18]. Although these ruptures were not in the scope of this study, it is evident that this kind of easily removable cast will fit well in treatment of these injuries. One advantage would be to monitor and treat wound complications even with the cast on. It also gives a direct access to healing tendon, either to monitor tendon healing with ultrasound, or possibly to stimulate tendon healing with external pulsating equipment.

Conclusions

This study challenges the long-time circular cast design in ankle immobilization. It seems that even a semi-rigid open wood composite cast is safe and strong enough to stabilize common ankle fractures, and to successfully protect postoperative period after ankle arthrodesis.  Taken together current data is very promising for an open type cast technology, further and larger studies are highly warranted.

References

  1. Colditz J. Plaster of Paris: The Forgotten Hand Splinting Material. J Hand Ther 2002 Apr-Jun;15(2):144-57.(Pubmed)
  2. Lindfors NC, Salo J. A Novel Nontoxic Wood-Plastic Composite Cast. Open Med Dev J 2012; 4:1-5. (Link)
  3. Runumi G, Utpal KN. Study of Effect of NCO/OH Molar Ratio and Molecular Weight of Polyol on the Physico-Mechanical Properties of Polyurethane Plaster Cast. World Appl Sci J 2013; 21(2):276-283. (Link)
  4. Suojalehto H, Linström I, Henriks-Eckerman M-L, Jungwelter S, Suuronen K. Occupational asthma related to low levels of airborne methylene diphenyl diisocyanate (MDI) in orthopedic casting work. Am J Ind Med 2011 Dec;54(12):906-10. (Pubmed)
  5. Lee YS, Chen SW. Lateral fixation of open AO type-B2 ankle fractures: the Knowles pin versus plate. Int Orthop 2009 Aug;33(4):1135–1139. (Pubmed)
  6. Herscovici D, Scaduto JM, Infante A. Conservative treatment of isolated fractures of the medial malleolus. J Bone Joint Surg 2007 Jan;89(1):89-93. (Pubmed)
  7. Van Laarhoven CJHM, Meeuwis JD, Van Der Werken C. Postoperative treatment of internally fixed ankle fractures. J Bone Joint Surg 1996 May;78(3):395-9. (Pubmed)
  8. Egol KA, Dolan R, Koval KJ. Functional outcome of surgery for fractures of the ankle. J Bone Joint Surg 2000 Mar;82(2):246-9. (Pubmed)
  9. Halanski M., Noonan KJ. Cast and Splint Immobilization: Complications. J Am Acad Orthop Surg 2008 Jan;16(1):30-40. (Pubmed)
  10. Dietrich A, Lill H, Engel T, SchönfelderM, Josten C. Conservative functional treatment of ankle fractures. Orthop Trauma Surg 2002 Apr;122(3):165-168. (Pubmed)
  11. Cooke MW, Marsh JL, Clark M, Nakash R, Jarvis RM, Hutton JL, Szczepura A, Wilson S, Lamb SE. Treatment of severe ankle sprain: a pragmatic randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of three types of mechanical ankle support with tubular bandage. Health Technol Assess 2009 Feb;13(13). (Pubmed)
  12. Petersen W, Rembitzki IV, Koppenburg AG, Ellermann A, Liebau C, Brüggemann GP, Best R. Treatment of acute ankle ligament injuries: a systematic review. Orthop Trauma Surg 2013 Aug;133(8):1129–1141. (Pubmed) FORUM
  13. Wykes PR, Eccles B, Thennavan B; Barries JL. Improvement in the treatment of stable ankle fractures: an audit based approach. Injury 2004 Aug;35(8):799-804. (Pubmed)
  14. Polzer H, Kanz KG, Prall WC. Diagnosis and treatment of acute ankle injuries: development of an evidence-based algorithm. Orthop Rev 2012 Jan;4(2):22-32. (Pubmed)
  15. Pifer G. Casting and splinting: Prevention of complications. Top Emerg Med 2000;22:48-54. (Link)
  16. Patil S, Gandhi J, Curzon I, Hui ACW. Incidence of deep-vein thrombosis in patients with fractures of the ankle treated in a plaster cast. J Bone Joint Surg 2007; 89:1340-3. (Link)
  17. Kesieme E, Kesieme C, Jebbin N, Irekpita E, Dongo A. Deep vein thrombosis: a clinical review. J Blood Med 2011 Apr;2:59–69. (Pubmed)
  18. Roderik Metz R, Kerkhoffs G, Verleisdonk EJ, Van der Heijden GJ. Acute Achilles tendon rupture: minimally invasive surgery versus non operative treatment, with immediate full weight bearing. Design of a randomized controlled trial. BMC Musculoskeletal Disorders 2007 Nov;8:108. (Link)

Tuberculous Tenosynovitis of Ankle with Rice Bodies

By K P Raju, Dr J Mohan Kumar, Dr Roshan Shettypdflrg

The Foot and Ankle Online Journal 6 (10): 1

Tuberculosis (TB) is still endemic in many developed countries. Involvement of the ankle at presentation is extremely rare, and the diagnosis is often missed. Tuberculosis can involve pulmonary as well as extrapulmonary sites. The musculoskeletal system is involved in 1–3% of patients with TB. Although musculoskeletal TB has become uncommon in the Western world, it remains a huge problem in India . Isolated soft tissue TB is extremely rare. Early diagnosis and prompt treatment are mandatory to prevent serious destruction of joints. Due to the nonspecific and often indolent clinical presentation, the diagnosis may be delayed. Radiological assessment is often the first step in the diagnostic workup of patients with musculoskeletal TB and further investigations are decided by the findings on radiography. Both the radiologist and the clinician should be aware of the possibility of this diagnosis. The authors encountered a rare case of tubercular tenosynovitis of ankle with rice bodies.

Key words: Tuberculosis, tenosynovitis, ankle, rice bodies, fibrin.

Accepted: September, 2013
Published: October, 2013

ISSN 1941-6806
doi: 10.3827/faoj.2013.0610.001

Address correspondence to: Dr K P Raju, Dr J Mohan Kumar, Dr Roshan Shetty, BGS Global Hospital & BGS GIMS, Bengaluru,India.
Email: drjmohankumar@yahoo.co.in


Tuberculous tenosynovitis was first described by Acrel in 1777. Particles are named “rice body”, due to their resemblance to shiny rice grains, was first described by Reise in1895.[1] Rice body formation may occur with a systemic inflammatory disease or alone in localized form. While it is mostly seen in patients with rheumatoid arthritis,[2] it may also be accompanied by juvenile rheumatoid arthritis,[3,4] tuberculous arthritis, tuberculous tenosynovitis and tuberculous bursitis,[5] atypical mycobacterial tenosynovitis,[7,8] osteoarthritis,[9] in addition to nonspecific arthritis, tenosynovitis, and bursitis.[10]

Rice body formation may occur in intra-articular structures, at tendon insertions and synovial structures like periarticular bursa of the shoulder, knee, wrist and ankles, which are the most common sites of involvement.[2,5] Both primary tuberculous bursitis and tenosynovitis are rare conditions.[6] Diagnosis with classical radiography is challenging. Arthrography, bursography, ultrasonography (USG) and magnetic resonance imaging (MRI) are useful techniques in preoperative diagnosis. The histological structure usually comprises an amorphous core of necrotic cells in the center, surrounded by a layer of fibrin and collagen.[11]

ricebodies1a ricebodies1b

Figure 1A and 1B T1-weighted sagittal image showing hypointense mass with slightly hyperintense septaes. (A) T2-weighted image showing hyperintense liquid with nodular, diffuse hypointense structures lined in a thick capsular mass.(B)

We present a case of rice body formation in tubercular tenosynovitis of ankle, without any systemic disease.

Case report

A 25-year-old woman presented with a mass in her right ankle, which had been present for 2 years. She experienced a mild pain during long walks and going up and down the stairs. She had no history of trauma, tuberculosis or systemic inflammatory disease. On physical examination there was an immobile soft tissue mass of 7×3×2 cm in her right ankle. The mass was tender on palpation and there was no redness or increase in warmth of the skin. There was no limitation in the motion of the ankle joint despite the pain. The laboratory tests were within normal limits and chest radiograph did not reveal any abnormality. Ankle radiograph showed a soft tissue shadow. On MRI images there was a lobulated mass with peripheral contrast enhancement around the lateral aspect of ankle. The mass had neat contours, consisted of numerous, small nodular regions and had no connection with the tibiotalar joint. There was no effusion or a space occupying lesion within the joint. T1-weighted sagittal image showed a hypointense mass with slightly hyperintense septaes, and T2-weighted image a hyperintense liquid with nodular, diffuse hypointense structures with a thick capsule. (Fig. 1A and 1B)

Surgical treatment was advised for chronic, nonspecific bursitis. Numerous, shiny and grainy particles were removed following the incision of the tenosynovium around the peroneal tendon. (Fig. 2A and 2B)

Pathological examination of the excised particles revealed synovial necrosis and fibrin deposition in the center, surrounded by scores of granulomatous structures with giant cells, in addition to apparent inflammatory infiltration of lymphocytes, plasma cells and macrophages. (Fig 3A and 3B)

ricebodies2a ricebodies2b

Figure 2A and 2B Surgical exploration reveals a large, nodular mass along the course of the peroneal tendon. (A) Inside the mass were numerous, grainy particles or rice bodies rich in fibrin and collagen. (B)

The case was diagnosed as rice body formation secondary to tubercular tenosynovitis of peroneal tendon, based on the MRI findings, intraoperative appearance, and histopathological report. Antituberculous treatment was started as soon as the identification of M. tuberculosis was confirmed. After one year of treatment the patient had full range of motion without pain. Recurrence was not observed during the two year follow-up period.

ricebodies3a ricebodies3b

Figure 3A and 3B Microscopic evaluation reveal synovial necrosis and fibrin deposition (center) surrounded by scores of granulomatous structures with giant cells, in addition to apparent inflammatory infiltration of lymphocytes, plasma cells and macrophages. (A) Numerous rice bodies isolated from the mass. (B)

Discussion

Rice bodies are free particles that have a cartilage-like shiny appearance, can reach high numbers, and are of synovial origin.[12] There is no consensus on the etiology. The condition is believed to develop as a nonspecific response to synovial inflammation.[3] Synovial ischemia and necrosis due to hypoxia, caused by the disruption of microcirculation, are thought to be the triggering factors. Rice bodies are formed by the necrotized particles which break away from the synovium and adhere to the fibrin in the joint space, tendon sheath or inside the bursa. After phagocytosis by the macrophages they are denatured in phagolysosomes and by acting like collagen antigens they lead to an auto-immune response.[11] Another hypothesis suggests that collagen, newly synthesized by synovial cells, can lead to formation of rice bodies. It should be, however, kept in mind that the condition might be misinterpreted as synovial chondromatosis. In the literature, it is emphasized that pathological misdiagnosis is possible and there is no evidence of cartilage tissue presence in rice bodies. Histopathological examination of our case, likewise, presented no sign of cartilage tissue in the bodies.

Some authors have advocated that the emergence of rice bodies is due to a new formation caused by the progressive growth of fibronectin and fibrin aggregates in the synovial fluid, independent from the synovial elements.[11,13] While 47% of the synovial protein is composed of collagen in rheumatic diseases, in rice body proteins this percentage is only 10%. Rice bodies are richer in fibrin.

However, Popert, et al., have shown the particles are not homogenous.[13] While some rice bodies are mostly formed of fibrin, some are composed of synovial membrane. Some others are formed of synovial core surrounded by fibrin.[11,12] Muirhead et al., in their ultrastructural study, reported that rice bodies can be of multiple origins based on their localizations.[10]

In our study, pathological examination of the excised bodies presented a structure with synovial necrosis and fibrin deposition in the center.

Chen et al., [14] in their case study, discussed the probability of correct preoperative diagnosis and emphasized the importance of T2-weighted MRI.They reported that rice bodies were seen in the hyperintense bursal fluid as numerous hypointense areas. This view is slightly hyperintense compared to skeletal muscle.[14] Likewise, in our case, preoperative T2-weighted MRI images with sagittal sections showed hyperintense synovial fluid with nodular and diffuse hypointense structures that had a thick capsule, surrounding the peroneal tendon. In addition, two entities stand out in differential diagnosis: pigmented villonodular synovitis and synovial osteochondromatosis. Rice bodies differ from villonodular synovitis with the absence of hemosiderin deposits, and from osteochondromatosis with the absence of radiographic evidence of ossification in the soft tissues. Synovial chondromatosis was a differential diagnosis in this case. This rarely involves a synovium lined bursa[15] and has an unmineralised metaplastic cartilage.[16] In unossified synovial chondromatosis, MRI will be helpful in the differential diagnosis. As rice bodies are rich of fibrous structures, they appear darker (hypointense) in T2-weighted images, close to the intensity of muscles. In contrast, synovial chondromatoses are rich in cartilage and appear more hyperintense, compared to rice bodies.[3,17]

Looking at the MR images of our case and other patients, we believe the T2-weighted images can be an important criterion in diagnosis and differential diagnosis. Although symptomatic improvements with long-acting steroids, aspiration and lavage have been reported, basic approach in the treatment is surgical excision.[13,18] No recurrence was observed in the follow-up period of two years, following the excision of rice bodies in our case. It should be kept in mind that rice bodies can be seen in an extra-articular localization and with no association with a systemic inflammatory disease. Clinical examination and MRI are of great importance in diagnosis and surgical excision will provide a safe and definitive treatment.

References

1. Reise H. Die Reiskorpschen in tuberculserkrankensynovalsacken. Deutsche Zeitschrift für Chirurgie, vol. 42, p. 1, 1895 (German).
2. Kataria RK, Chaiamnuay S, Jacobson LD, Brent LH. Subacromial bursitis with rice bodies, as the presenting manifestationof rheumatoid arthritis. J Rheumatol 2003 30: 1354-1355. [PubMed]
3. Chung C, Coley BD, Martin LC. Rice bodies in juvenile rheumatoid arthritis. AJR Am J Roentgenol 1998 170:698-700.[PubMed]
4. Cuomo A, Pirpiris M, Otsuka NY. Case report: biceps tenosynovial rice bodies. J Pediatr Orthop B 2006 15: 423-425.
5. Suso S, Peidro L, Ramon R. Tuberculous synovitis with “rice bodies” presenting as carpal tunnel syndrome. J Hand Surg Am 1988 13: 574-576. [PubMed]
6. Jaovisidha S, Chen C, Ryu K N, et al. Tuberculous tenosynovitis and bursitis;imaging findings in 21 cases. Radiology 1996 201: 507-134. [PubMed]
7. Chau CL, Griffith JF, Chan PT, Lui TH, Yu KS, Ngai WK.Rice body formation in atypical mucobacterial tenosynovitis and bursitis: Findings on sonography and MR imaging. AJR Am J Roentgenol 2003 180: 1455-1459. [PubMed]
8. Sanger JR, Stampfl DA, Franson TR. Recurrent granulomatous synovitis due to Mycobacterium kansasii in a renal transplant recipient. J Hand Surg Am 1987;12: 436-441. [PubMed]
9. Li-Yu J, Clayburne GM, Sieck MS, Walker SE, Athreya BH, DeHoratius RJ, Schumacher HR. Calcium apatite crystals in synovial fluid rice bodies. Ann Rheum Dis 2002 61: 387-390. [PubMed]
10. Muirhead DE, Johnson EH, Luis C. A light and ultrastructural study of rice bodies recovered from a case of date thorn-induced extra-articular synovitis. Ultrastruct Pathol 1998 22: 341-347. [PubMed]
11. McCarty DJ, Cheung HS. Origin and significance of rice bodies in synovial fluid. Lancet 1982;1:715-6. [PubMed]
12. Aflk M, Eralp L, Çetik O, Altnel L. Rice bodies of synovial origin in the knee joint. Arthroscopy. 2001;17:E19. [PubMed]
13. Popert AJ, Scott DL, Wainwright AC, Walton KW,Williamson N, Chapman JH. Frequency of occurrence,\ mode of development, and significance of rice bodies in rheumatoid joints. Ann Rheum Dis 1982 41: 109-117. [PubMed]
14. Chen A, Wong LY, Sheu CY, Chen BF. Distinguishing multiple rice body formation in chronic subacromial-subdeltoid bursitis from synovial chondromatosis. Skeletal Radiol 2002 31:119-21. [PubMed]
15. Milgram JW, Hadesman WM. Synovial osteochondromatosis in the subacromial bursa. Clin Orthop Relat Res 1988 236:154–159. [PubMed]
16. Milgram JW. Synovial osteochondromatosis: a histopathological study of thirty cases. JBJS 1977 59A: 792-801. [PubMed]
17. Griffith JF, Peh WCG, Evans NS, Smallman LA, Wong RWS, Thomas AMC. Multiple rice body formation in chronic subacromial/subdeltoid bursitis: MR appearance. Clin Radiol 1996;51:511-4. [PubMed]
18. Popert J. Rice bodies, synovial debris and joint lavage. J Rheumatol Br 1985;24:1-5. [PubMed]

The Role of High Resolution Ultrasonography in Detection of Neglected or Missed Radiolucent Foreign Body in Foot and Ankle Region

by Reyaz Ahmad Dar (MS)1emailsm, Mubashir Maqbool Wani (MS)2emailsm, pdflrgMubashir Rashid Beig (MS)1, Muzaffer Ahmad Ganaie (MS)1

The Foot and Ankle Online Journal 6 (3): 2

A prospective case series was undertaken to assess the role of high resolution ultrasonography to detect radiolucent foreign bodies in the foot and ankle region. Out of 30 suspected foreign bodies, ultrasonography was able to detect 28 foreign bodies with 2 false negatives. The overall sensitivity was 93.33%. The false negatives were attributed to the foreign body being obscured by bone.

Key words: , foot, ankle, ultrasound,

Accepted: February, 2012
Published: March, 2013

ISSN 1941-6806
doi: 10.3827/faoj.2013.0603.002


Address correspondence to: Department of orthopaedics, SKIMS Medical college Srinagar Kashmir India – Pin 190018

1Department of orthopaedics, SKIMS Medical college Srinagar Kashmir India – Pin 190018
2Hospital for bone and joint surgery Barzulla Srinagar Kashmir India – Pin 190005


Missed or neglected foreign body and subsequent complications in the extremities is a challenging complaint in the orthopedic outpatient department. Most of these cases present with soft tissue mass, granuloma, abscess, corns, osteomyelitis, fasciitis, cellulitis, chronic discharging sinus, and tendon contracture with or without pain.[1,2,3] The initial investigation is usually done with a plain radiograph, which however, cannot detect radiolucent foreign bodies such as those of wood, plastic and rubber.

Of the other imaging modalities, xeroradiography provides better edge enhancement, but it requires special equipment and is inadequate in detecting radiolucent foreign bodies.[4,5]

Computerized tomographic (CT) scan has the ability to detect the radiolucent foreign bodies with limitations of ionizing radiation, cost and poor sensitivity in detecting small foreign bodies.[6,7] Magnetic Resonance Imaging (MRI) can detect radiolucent foreign bodies but has the limitations of being inaccessible, expensive, and a concern regarding magnetic foreign bodies as well as time consuming.

USFBFig1 USFBFig2

Figure 1 and Figure 2 High-resolution ultrasound of a foot suspected of having a foreign body.

There is an added disadvantage of not detecting foreign bodies with low signal intensity from tissues such as scar tissue, tendon and calcifications.[8,9] Sonography, on the other hand, is easily accessible, inexpensive and a time saving image modality.

We undertook our study on thirty patients who presented to our outpatient department at two hospitals with a definite history of foreign body injury to the foot and ankle region. Patients presented with varied signs and symptoms which included pain, soft tissue mass, abscess, corn, chronic discharging sinus with duration of symptoms ranging from four months to eight years.

Most of these patients were initially managed by primary care givers and missed or often self treated themselves removing only a part of foreign body and subsequently neglected. Our aim was to assess the role of foreign body detection in these patients with high resolution ultra sonography (USG).

Materials and Methods

Thirty symptomatic patients who had a definite history of foreign body injury of the foot and ankle region were included in this study. The symptoms of these patients varied from simple pain to chronic discharging sinus and all had a normal plain radiograph. All of them underwent high resolution ultra sonography of the affected part followed by surgical exploration.

Sonography was conducted by four specialist doctors who had a minimum of four years of experience in the radiology department. Sensitivity of USG was determined with respect to that found on surgical exploration.

Results

Thirty consecutive patients presented to our outpatient departments from May 2008 to May 2012 with history of foreign body injury. Patients presented with persistent pain, soft tissue mass, granuloma, abscess or chronic discharging sinus with a normal radiograph. Nineteen patients were male. Twenty two patients were younger than twenty years of age. Twenty eight patients had symptoms in the foot; two had symptoms in the ankle region. Twenty three patients had a history of nail insertion in the foot through a rubber sole. There was thorn injury in six patients with five having it in the foot and one in the ankle region. One patient had injury to the ankle with a wood. Three patients had multiple surgical interventions for chronic discharging sinuses.

All these patients were sent to radiology for the high resolution ultra sonography of the affected part. In all our cases a frequency of 7.5 MHz to 13 MHz was employed. Foreign bodies were reported as hyperechoic masses with surrounding hypo echoic rim with an acoustic shadow in twenty eight patients (Fig. 1 and Fig. 2).

USFBFig3

Figure 3 Foreign body seen at the time of surgery.

Two patients which were reported negative had chronic discharging sinus with one having it on the lateral malleolus and another on the dorsal aspect of the foot. All patients underwent surgical exploration under general or regional anaesthesia with tourniquet control. Preoperative methylene blue injection into the sinus was used in three patients with chronic discharging sinus. Foreign bodies were recovered from all the patients (Fig. 3 and Fig. 4). Two patients who were labeled by the sonologist of not having a foreign body had foreign bodies close to or obscured by the bone. One of the patients had injury to the right lateral malleolar area with a wooden foreign body with persistent sinus discharge, and on exploration the foreign body was found very close to and abutting the cortex. Another patient had a history of nail insertion through the sole of the shoe with persistent sinus discharge on the planter aspect of the foot, and on surgical exploration a piece of rubber was found abutting the second metatarsal shaft cortex on the dorsal aspect. Out of the total thirty suspected radiolucent foreign bodies, high resolution ultra sonography was able to detect the foreign body in 28 patients with two false negatives with an overall sensitivity of 93.33%.

USFBFig4

Figure 4 Foreign body after removal.

Discussion

The basic principle of ultra sound is the use of a transducer to penetrate tissues with ultrasonic waves at various frequencies. When the wave strikes the denser component of tissue, they bounce (echo) back to the transducer. The ultrasound can then interpret the speed and intensity of the sound wave to determine the location and composition of the object. Structures are plotted on the screen based on their depth and location relative to the transducer. Superficial structures are plotted at the top and deeper ones at the bottom of the screen. The larger the surface area toward the transducer the greater it will reflect. Sonographic features of the foreign bodies in the soft tissues have three components. Firstly, the appearance of the foreign body; secondly, the changes in the soft tissues surrounding the foreign bodies. Thirdly, the appearance of soft tissues distal to the foreign bodies.

All foreign bodies on ultrasonography appear as hyperechoic foci. The reflectivity depends on acoustic impedance of the foreign body which in turn varies with the density of the object. In general, metal, mineral, glass, wood, and rubber reflect sound, appearing white on the screen. The changes surrounding the foreign bodies are due to inflammatory reaction which may range from edema to abscess formation.

This reaction takes some time to develop and is shown as hypo echoic rim around the foreign body. Distal to the echo rich foreign body acoustic shadowing is noted. This is due to failure of the ultrasound to pass through the foreign body.[10,11]

Despite their size, foreign bodies are no small matter. When left untreated they cause pain, swelling, infection, nerve and tendon injury.[2,3,12] Although USG has been a well-established diagnostic tool for foreign bodies in the soft tissues, it has been underutilized in this part of the world. While evaluating the usefulness of USG in the detection of unsuspected foreign bodies followed by CT, MRI, bone and labeled red cell Scintigraphy, it has been found that the later investigations added no relevant information and were time consuming and costly.[12] The sensitivity of USG in detecting different foreign bodies has been reported to be 70% to 100%. Cases which turned out to be false negatives had either a very deep foreign body, gas around foreign body, or a foreign body too close to the bone [8,13,14,15] as was the case in two of our patients.

Several studies have demonstrated the effectiveness of USG in detecting non-opaque foreign bodies in the soft tissues. The power of USG is as important as the depth of penetration of wave into soft tissues. The shorter wave length with high frequency penetrates less as most of energy is absorbed by the medium.[15] The authors do not believe that the results could be different if the USG was done by the same radiologists. Differences in the comparative accuracy, sensitivity and specificity of foreign body detection by radiologist and USG technician has not been found to be statistically significant in the previous studies.[16]

Conclusion

The authors do not recommend replacing plain radiography with ultrasonography in the evaluation of suspected foreign bodies of the foot and ankle region. But Sonography should definitely be considered part of diagnostic work up of patients in whom we strongly suspect the presence of radiolucent foreign bodies based on history and symptomatology.

References

  1. Lammers RL. Soft issue foreign bodies. Ann Emerg Med 1987 17:1336-1346.[PubMed]
  2. Dhar SA, Dar TA, Sultan A, , Butt MF, Mir MR, Kawoosa AA, Farooq S. Delayed manifestations of the nail –slipper injury. Chir Organi 2009 93 149-153.[PubMed]
  3. Dar TA, Sultan A, Hussain S, Dhar SA, Ali MF. Contracture of the third toe as delayed manifestation of foreign body in the foot. Foot Ankle Specialist 2011 4: 298-300. [PubMed]
  4. Anderson MA, Newmeyer WL, Kilgore Jr ES. Diagnosis and treatment of retained foreign bodies in the hand. Am J Surg 1992 144: 63-65. [PubMed]
  5. Flom LL, Ellis GL. Radiologic evaluation of foreign bodies. Em Med Clinics North Am 1992 10 163-177. [PubMed]
  6. Russell RC, Williamson DA, Sullivan JW, Suchy H, Suliman O. Detection of foreign bodies in hand. J Hand Surg 1991 16A: 2-11. [PubMed]
  7. Mizel MS, Steinmetz N, Trepman E. Detection   of wooden foreign bodies in the muscle tissue: experimental comparison of computerized tomography, magnetic resonance imaging and ultra sonography. Foot Ankle 1994 15: 437-443. [PubMed]
  8. Tedric D. Boyce, David P. Fessell, Jon A. Jacobson. Lin J, van Holsbeeck MT, Hayes CW. Foreign bodies and associated complications with surgical correlation. Radiographics 2001 21:1251-1256. [PubMed]
  9. Jon A. Jacobson, Powell A, Craig JG, Bouffard JA, van Holsbeeck MT. Wooden foreign bodies in soft tissues. Radiology 1998 206: 45-48. [PubMed]
  10. Lisa D Mills, Christy Butts. Capturing elusive foreign bodies with ultrasound. Emergency Medicine 2009 36-42. [Website]
  11. Banerjee B, Das RKD. Sonographic detection of foreign bodies in the extremities.  Brit J Radiology 1991 64: 107-112. [PubMed]
  12. Soudack M, Nachtigal A, Gaitini D. Clinically unsuspected foreign bodies, The importance of sonography. J Ultrasound Med 2003 22:1381-1385.[PubMed]
  13. Crankson S, Oratis P, Al Mazaid G. Ultrasound in the diagnosis and treatment of wooden foreign bodies in the foot. 2004 Ann Soudi Med 24. [PubMed]
  14. Lyon M, Brannam L, Johnson D, Blaivas M, Duggal S. Detection of soft tissue foreign bodies in the presence of soft tissue gas. J Ultrasound Med 2004 23: 677-681. [PubMed]
  15. Turkcuer I, Atilla R, Topacoglu H, Yanturali S, Kiyan S, Kabakci N, Bozkurt S, Cevik AA. Do we really need plain and soft tissue radiography to detect radiolucent foreign bodies in the ED. American Journal of emergency medicine. 2006 24: 763-768. [PubMed]
  16. Orlinsky M, Knittel P, Feit T, Chan L, Mandavia D. The comparative accuracy of foreign body detection using ultrasonography. Am J Emerg Med 2000 18: 401-403. [PubMed]

Malignant Fibrous Histiocytoma of the Ankle: A Case Report

by Katherine Neiderer, DPM, MPH1, Jodi Walters, DPM, James Dancho, DPM, FACFAS, Margaret Rennels, MD

The Foot and Ankle Online Journal 5 (3): 1

Malignant fibrous histiocytomas are a rare soft tissue sarcoma that present as indolent tumors in adults. Treatment consists of wide surgical excision. Local recurrence and metastasis is common and patients must be followed for such. We describe the case of a 49 year-old male that presented with a painless “lump” on the front of his ankle. Magnetic resonance imaging showed a 2.6 x 3.5 x 4.3 cm lesion that displayed high intensity on the T2 weighted image. The mass partially encased the tibialis anterior tendon along the medial aspect without invading the body of the tendon. The radiologist suspected a possible malignant neoplasm including synovial sarcoma or giant cell tumor of the tendon sheath. The patient underwent wide excision of the lesion and pathology diagnosed it as malignant fibrous histiocytoma at the anterior ankle. The patient underwent limb sparing surgery without adjuvant chemotherapy and after 2 years of follow-up he has had no recurrence or metastasis.

Key words: Ankle, histiocytoma, malignant fibrous, neoplasms, sarcoma

Accepted: February, 2012
Published: March, 2012

ISSN 1941-6806
doi: 10.3827/faoj.2012.0503.0001


Malignant fibrous histiocytomas (MFH) are the most common soft tissue sarcomas in adults.[1,2] MFH is a rare sarcoma that has no predilection for age and affects both genders equally. In a recent major review of 458 soft tissue sarcomas 11% were in the thigh (the most common location) while 3% were in a distal extremity, either distal to the knee or elbow.[3] Prognosis is correlated to tumor size, depth and location and has been discovered along with gouty tophi and internal fixation.[4-7]

MFH most commonly metastasizes to the lungs and patients should be followed with regular chest radiographs. Recurrence most commonly occurs within 2 years.[3] The treatment consists of primary resection with adjuvant chemotherapy depending on clear margins, depth and lymph node involvement.[8]

Case Report

A 49 year-old gentleman presented to our clinic with a complaint of a “bump” of the anterior medial ankle. The patient noted only minimal discomfort with high topped shoes or work type boots, as they would press directly on the lesion and cause irritation.

Figure 1 Magnetic resonance image of the soft tissue sarcoma. (A) Axial view (B) Longitudinal view.

The lesion had been present for at least one year, and was progressively growing over the past few months. No history of trauma to the area was noted and he had no previous treatment for the lesion.

The medical history was significant for hypertension, sleep apnea and chronic back pain. He had previous umbilical and inguinal hernia repair, a knee arthroscopy and mucocele removal. He denied any other lesions, similar to the one on his foot, anywhere on his body.

On physical examination, there was a round, mildly fluctuant, rubbery golf-ball sized lesion measuring approximately 3.5 cm in diameter along the lateral aspect of the tibialis anterior tendon. The lesion was fairly mobile underneath the skin and transillumination was not possible. It was fairly painless to palpation, leading to the suspicion that the mass was merely irritated by rubbing, or direct pressure from shoegear. There was no surrounding erythema, edema, ulceration or telangiectasias associated with the lesion.

Dorsalis pedis and posterior tibial pulses were palpable and capillary filling time was instantaneous to all digits bilaterally. Tinel’s sign was not elicited on percussion of the mass and sharp-dull, light touch and vibratory sensation were intact. Manual muscle testing was within normal limits and the lesion was noted to translocate with dorsiflexion and plantar flexion of the ankle.

Plain films revealed a large soft tissue rounded density anteriorly and medially overlying the right ankle without any definitive underlying bony abnormality. The patient was then sent for magnetic resonance imaging (MRI) to determine the characteristics of the lesion. The lesion measured 2.6 x 3.5 x 4.3cm and displayed high signal intensity and intense enhancement on the T2 weighted image. (Fig. 1) The mass partially encased the tibialis anterior tendon along the medial aspect without invading the body of the tendon. The radiologist suspected a possible malignant neoplasm due to the intense enhancement and size with differential diagnoses including synovial sarcoma or giant cell tumor of the tendon sheath.

Due to the suspicious nature of the lesion and for surgical planning a core needle biopsy was performed to obtain a clearer diagnosis.

It revealed a relatively cellular sample containing a few somewhat atypical cells with moderate mitotic activity and simple excision was performed. The patient was taken to the operating room and a linear incision was made over the underlying lesion. The lesion was dissected free of the surrounding soft tissue and appeared to be part of the medial branch of the superficial peroneal nerve. The lesion was a yellow/tan color and seemed well encapsulated. The tumor was easily separated from the surrounding tissues, but we were unable to remove it from the nerve, so the nerve had to be sacrificed. The final specimen measured 4.8 x 4.0 x 2.8cm. (Fig. 2)

Figure 2 Gross specimen of soft tissue sarcoma. Although it appeared to be encapsulated, it was not entirely circumscribed and included a transected margin with mitotically active pleomorphic cells.

Gross examination showed slight lobulation of the lesion with focal hemorrhage and no sign of necrosis. Sectioning the specimen revealed a soft, yellow/tan, vaguely lobulated mass with broad, fine, and indiscrete, fibrous septae. Microscopic examination noted an extremely cellular tumor with pleomorphic, mitotically active cells with a mitotic rate of 9 per high powered field with a histologic grade of 3. It was also noted at this time that despite the apparent encapsulation of the tumor, there was transection of the tumor margin and aggressive mitosis in the area that suggested a malignant fibrous histiocytoma of high grade malignancy. (Fig. 3)

Figure 3 Histological assessment reveals an area of pleomorphic tumor with bizarre giant cells and very high mitotic rate including abnormal mitoses (10x power/hematoxylin and eosin stain).

Due to the malignant finding and the incomplete margin a surgical oncologist was consulted. The patient returned to the operating room where a wide local excision of the area was performed. The resected tissue was examined, and no further remnants of the lesion were seen at the margins. A full thickness skin graft of the area was taken from the patient’s thigh and subsequently placed on the wound bed. The patient was kept non-weight bearing in an off-loading boot and subsequent local wound care was performed until complete healing was achieved.

Approximately 5 months later the patient developed a firm, well-demarcated lesion directly adjacent to the previous surgical margin. An MRI revealed a 5.1 x 4.5 x 4.0 mm mass just superficial but abutting the extensor digitorum longus tendons. This lesion was intermediate on T1 and increased on T2, showing a relatively homogenous enhancement. Due to its small nature it was difficult to differentiate between the vessels in the vicinity. Because of the patients’ history he was taken back to the operating room. A 5cm linear incision was made over the mass. The incision was deepened to the level of the superficial peroneal nerve where the mass was visualized within the nerve’s fibers.

It was traced proximally and distally and the entire nerve and lesion were removed in toto. Further inspection of the area revealed no additional lesions. Pathologic exam identified the 1.2 x 0.9 x 0.3cm specimen as a traumatic neuroma of the intermediate branch of the superficial peroneal nerve.

The patient is currently being followed for another pea-sized lesion that was discovered 3 months after his second surgery. It is approximately 2 mm in diameter, is movable and lies just proximal to the second surgical margin along the course of the superficial peroneal nerve. We are following him for any growth in this lesion and do not have any current plans for further surgical intervention.

Due to both of his surgeries the patient has numbness to the dorsum of his foot. He has no residual weakness to any of the muscle groups to his foot and has noticed no other lesions anywhere else on his body, with exception to the foot. The patient has also had serial chest radiographs that have shown no metastases.

Discussion

Malignant fibrous histiocytoma (MFH), first described in the sixties, is the most common soft tissue sarcoma in adults. It occurs most often in the proximal portions of the extremities including the thigh and buttocks.1 The mean age is 55.8 with a range of 18 to 84 years and equally affects males and females. Most patients present with an asymptomatic tumor that they have noticed in less than a year.[3]

Initial diagnosis is frequently attained by biopsy and MRI is useful in surgical planning. This requires sampling from several areas of the tumor as the histological sample can vary from location to location. There is no specific immunohistochemical marker for MFH, so the diagnosis is usually one of exclusion.8 MFH are classified using immunohistochemical methods for type and grade according to the system of Enzinger and Weiss with the lower grades signifying level of differentiation.[2]

The histology of MFH is variable and several subtypes including storiform-pleomorphic, myxoid, giant cell and inflammatory exist with the storiform-pleomorphic being the most common.[9] All variants may be locally aggressive and surgical excision is required.

Resection achieving tumor-free margins of at least 1-1.5cm is the goal for every case and has been shown to be the strongest risk factor of local recurrence.[8] For patients without clear margins, further surgical resection is preferred before using other treatment modalities.10 Local recurrence has reported to range from 31-38%, with 73-100% occurring within 24 months.[3,8] Postoperative radiation therapy has been shown to decrease local recurrence rate although it has also been associated with increased morbidity due to difficulty in wound healing.[11-13]

Metastasis is a significant concern in patients diagnosed with MFH. Peiper, et al., found of 458 patients 29 developed metastases after a median of 12 months, with the most common, 80%, seeding to the lungs. Prognostic risk factors for distant metastases include tumor size, depth and grade (based on the classification of Enzinger and Weiss). The annual risk of distant metastases was 3.5 times higher in patients with higher grade tumors.[3]

Peiper, et al., recommends chemotherapy to those patients with synchronous pulmonary or regional lymph node metastases after resection of the primary tumor. After 6 courses of chemotherapy, resection of the pulmonary lesion was then performed. Even with aggressive resection and adjuvant chemotherapy, cumulative 5-year survival rates are 65%-80%.[8,14,15]

In conclusion, although MFH is the most common soft tissue sarcoma in adults, it is still a rare diagnosis especially in the distal extremity. In 24 months of follow-up our patient had an additional lesion diagnosed as a traumatic neuroma although approximately 30% of patients will have a second MFH.[3] He has had no evidence of metastasis to this date and is monitored every 3 months with a physical exam and chest radiograph.

References

1. Enjoji M, Hashimoto H, Tsuneyoshi M, Iwasaki H. Malignant fibrous histiocytoma. A clinicopathologic study of 130 cases. Acta Pathol Jpn 1980 30:727-741. [PubMed]
2. Enzinger F, Weiss S. Soft Tissue Tumors. 4th Ed St. Louis, Mosby, 2001. [Website]
3. Peiper M, Zurakowski D, Knoefel WT, Izbicki JR. Malignant fibrous histiocytoma of the extremities and trunk: An institutional review. Surgery 2004 135: 59-66. [PubMed]
4. Richter H, Vinh TN, Mizel MS, Temple HT. Malignant fibrous histiocytoma associated with remote internal fixation of an ankle fracture. Foot Ankle Int 2006 27: 375-379. [PubMed]
5. Carnero S, Teran P, Trillo E. Malignant fibrous histiocytoma arising in a gouty tophus at the second metacarpophalangeal joint. J Plast Reconstr Aesthet Surg 2006 59:775-778. [PubMed]
6. Gibbs JF, Huang PP, Lee RJ, et al. Malignant fibrous histiocytoma: an institutional review. Cancer Invest 19: 2003 23-27, 2001. [PubMed]
7. Le Doussal V, Coindre JM, Leroux AHacene K, Terrier P, Bui NB, Bonichon F, Collin F, Mandard AM, Contesso G. Prognostic factors for patients with localized primary malignant fibrous histiocytoma: a multicenter study of 216 patients with multivariate analysis. Cancer 1996 77:1823-1830. [PubMed]
8. Issakov J, Kollender Y, Soyfer V, Bickels J, Flusser G, Meller I, Merimsky O. A single-team experience of limb sparing approach in adults with high-grade malignant fibrous histiocytoma. Oncol Rep 2005 14:1071-1076. [PubMed]
9. Fletcher C, Unni, KK and Mertens, F. World Health Organization Classification of Tumours. Pathology and genetics of tumours of soft tissue and bone. Lyon, IARC Press, 2002.[Website]
10. Pezzi CM, Rawlings MS, Jr., Esgro JJ, Pollock RE, Romsdahl MM. Prognostic factors in 227 patients with malignant fibrous histiocytoma. Cancer 1992 69: 2098-2103. [PubMed]
11. Bujko K, Suit HD, Springfield DS, Convery K. Wound healing after preoperative radiation for sarcoma of soft tissues. Surg Gynecol Obstet 1993 176:124-134. [PubMed]
12. Sadoski C, Suit HD, Rosenberg A, Mankin H, Efird J. Preoperative radiation, surgical margins, and local control of extremity sarcomas of soft tissues. J Surg Oncol 1993 52: 223-230. [PubMed]
13. Spiro IJ, Rosenberg AE, Springfield D, Suit H. Combined surgery and radiation therapy for limb preservation in soft tissue sarcoma of the extremity: the Massachusetts General Hospital experience. Cancer Invest 1993 13: 86-95. [PubMed]
14. Bramwell VH. Current perspectives in the management of soft-tissue sarcoma. The role of chemotherapy in multimodality therapy. Can J Surg 1988 31: 390-396. [PubMed]
15. Engellau J. Prognostic factors in soft tissue sarcoma. Tissue microarray for immunostaining, the importance of whole-tumor sections and time-dependence. Acta Orthop Scand 2004 5(Suppl): 2 p preceding table of contents-52, backcover. [PubMed]


Address correspondence to: Katherine Neiderer, DPM,MPH
Email: Katherine.Neiderer@va.gov

1 Southern AZ VA Health Care System, 3601 S. 6th Ave. (2-112) Tucson, AZ  85723

© The Foot and Ankle Online Journal, 2012

Ankle arthrodesis as a salvage procedure: A case of secondary ankle arthritis using Charnley’s compression device

by Narayana B.S. Gowda, D Ortho, DNB Ortho, MNAMS, Mohan J. Kumar, MS Ortho

The Foot and Ankle Online Journal 5 (2): 1

Ankle arthrodesis is commonly considered to be the standard operative treatment for end stage ankle arthritis. The purpose of this study was to perform a clinical and radiographic review to determine functional outcome for a group of patients in whom an ankle arthrodesis had been performed using Charnley’s compression device. A functional assessment of fifteen patients after ankle arthrodesis for post traumatic arthritis was carried out by means of an extensive clinical evaluation after an average follow up of 2 years and 8 months.

Key words: Ankle arthrodesis, ankle arthritis, Charnley’s compression device, secondary arthritis ankle.

Accepted: January, 2012
Published: February, 2012

ISSN 1941-6806
doi: 10.3827/faoj.2012.0502.0001


Ankle arthrodesis is considered by many to be the standard operative treatment for end stage ankle arthritis. [1] A patient with ankle arthritis and deformity can experience severe pain and functional disability. Treatment options include the use of walking aids, orthotic devices, intra-articular steroids, open rather than arthroscopic debridement, periarticular osteotomy, and arthroplasty, all of which have provided inconsistent relief. Ankle arthrodesis has been accepted by many as yielding good long term clinical results. [2]

Since 1879, when Albert first described arthrodesis of the ankle [8], more than thirty different techniques have been described. The open technique with compression and internal fixation is still widely used for ankle arthrodesis with major deformity. [9] Ankle arthrodesis is an alternative for cases with intact subtalar joint. [10] This study presents intermediate term follow up functional outcome of patients with ankle arthrodesis performed using Charnley’s compression device.

Materials and methods

We reviewed fifteen patients, 10 males and 5 females, who had undergone ankle arthrodesis between January 2006 to December 2009 at the People’s Education Society (PES) Medical College and Research Center, Kuppam, Andhra Pradesh (AP), India (6 cases of post traumatic AVN talus (Fig. 1), 4 cases malunited bimalleolar fracture, 3 cases of distal tibial plafond fractures, 2 cases of medial malleoli non-union). All the fifteen patients who had secondary ankle arthritis have undergone open ankle fusion with anterolateral approach (Fig. 2) in supine position under tourniquet control and spinal anaesthesia.

Figure 1  Preoperative radiograph right ankle showing arthritic changes secondary to non union talar neck fracture.

Figure 2  Intraoperative photo showing anterolateral approach to ankle.

Compression was achieved using Charnley’s compression device and a calcaneotibial Steinman pin was applied to maintain the alignment and to increase the stability of fixation (Figs. 3 and 4). Suction drain was removed after 48 hours and the patient was made ambulant with non weight on operated site. All the patients were evaluated clinically and radiologically at 6 weeks and tibiocalcaneal Steinman pin was removed and the patients were allowed to bear weight as tolerated. All the fixators were removed after 12 weeks once the arthrodesis site was united radiologically. We had 3 cases of cellulitis of ankle and foot which was treated successfully with antibiotics, and 5 cases of superficial pin tract infection which were healed completely after fixator removal. None of these pin tract infections caused osteomyelitis. The mean age at the time of surgery was 40.52 years (24 – 56 years) and the time interval between the date of fusion and date of follow up examination ranged from 1 year to 5 years and 7 months, the average being 2 years 8 months.

Figure 3  Immediate post operative radiograph showing Charnley’s compression device.

Figure 4  Clinical photo showing Charnley’s compression device.

Clinical Evaluation

The clinical evaluation was based on a personal interview and physical examination. The patients were questioned as to their pain during daily activities such as running or walking on the level ground and going up and down the hills and stairs. A complete orthopaedic examination evaluated stance, gait, limb length discrepancy, circumference, range of motion of the knees, ankles, and subtalar joints; neurovascular status muscle strength and presence or absence of tenderness and swelling. Special attention was directed to the position of the fused ankle and the motion of the subtalar and mid tarsal joints. Any valgus or varus deformities of the heel and the presence of the callosities were also determined. The contralateral extremity was used as a control. Ankle anterior posterior and lateral radiographs were taken to assess the fusion and position of the arthrodesis (Fig. 5).

Figure 5   Two year follow up radiographs shows solid union at the arthrodesis site.

To quantitate the results of the clinical examination the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot scale was used. The main emphasis of this system was on pain and the functional activities. A normal person would score 100 points. Because of lack of ankle motion, the maximum score that the patient with an ankle fusion could have was 92, since they could not earn the 8 points given for the full range of motion.

A score of 80 to 92 was considered an excellent result: 70 to 79, a good result; 60 to 69, a fair result; and score less than 60 was considered a poor result.

Results

All patients studied had a solidly fused ankle and had no complications related to the surgery (Fig 6). They were all improved as a result of ankle fusion and returned to their pre injury activities. Wearing shoes with appropriate heels, all the patients could walk on level ground without support. All the patients stated that they could walk up and down the stairs without much difficulty. Limb length discrepancies were insignificant (0.5 to 1.5 cm) except in one patient who had 2.5 cm secondarily due to distal tibial plafond fracture. The radiographs showed that 6 cases showed some evidence of degenerative changes in the subtalar joints which did not correlate with the symptoms.

Figure 6  Two year follow up clinical photo of right ankle arthrodesis showing very litte difference compared to left normal side.

Scoring the patients with the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot scale, we found that eleven of the 15 had excellent results; two good; and two fair results. All of them could walk with relatively good velocity and with a consistently rhythmic gait.

Discussion

The patients with solid ankle fusion in this study functioned very well during the activities of normal daily living. All of them could walk on the level ground without pain. The fusion had permitted them to return to their former occupations and recreational activities. On this basis all the patients could be classified as having very satisfactory results.

Based on the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot scale, these patients had appreciable limitations when walking barefoot but only mild to moderate limitations when wearing proper footwear. Patients were assessed not only under normal conditions but also under stressful conditions such as walking long distances, climbing up and down the stairs, and running. Six of the 15 could not run. Three had some minor discomfort after walking long distance.

When good surgical technique is used in carefully selected patients, ankle arthrodesis can be a reliable procedure for the relief of functionally disabling ankle arthritis, deformity, and pain. [9] As a fused ankle provides a painless ankle joint with limited functional disability, ankle arthrodesis is still the treatment of choice for most disabling ankle arthritis. [10]

Charnley’s compression devise is still a simple, cost effective and excellent external fixator which can be used easily by every orthopaedic surgeon. After removal of the fixator, there is no indication for additional surgery to remove the implant compared to internal fixation. There are no hardware problems as all the hardware was removed. The high level of satisfaction in this group of patients reinforces the view that open arthrodesis using Charnley’s compression device, as opposed to ankle replacement or arthroscopic arthrodesis, continues to be the treatment of choice when there is severe varus or valgus deformity associated with the arthritis. [11] Although ankle arthrodesis may provide good early relief of pain, it is associated with premature deterioration of other joints of the foot and eventual arthritis, pain, and dysfunction. [12-13] In studies ranging in size from 12 to 101 patients, rates of successful primary ankle fusion of 80% to 100% have been reported earlier. [14-18] However an average follow up time of 2 years and 8 months is relatively short to comment on the future secondary osteoarthritic changes in the subtalar and mid foot joints.

To be considered as an alternative preferable to arthrodesis, a total ankle replacement should give better results than those presented here, without other disadvantages. Patients with rheumatoid arthritis and involvement of ankle may not meet the criteria for an ankle arthrodesis may be because they have involvement not only of the ankle but also of the small joints of the foot, so that these joints cannot compensate for the fused ankle. Therefore, patients with rheumatoid arthritis may be better candidates for the total ankle replacement. [19]

Conclusion

Subjectively and objectively, the patients with ankle fusion function quite well in activities of daily living provided that, they have enough compensatory motion in the Chopart’s and Lisfranc joints of the foot, the other ankle has a normal range of motion, they wear footwear with appropriate height. On the basis of these results, patients should be counseled that an ankle fusion will help to relieve pain and to improve overall function; however, it is a salvage procedure that will cause persistent alterations in gait with a potential for deterioration due to the development of ipsilateral hindfoot arthritis. Charnley’s compression device can still be considered as the fixator of choice compared to other modalities available with respect to cost, simplicity and good outcome.

References

1. Coester LM, Saltzman CL, Leupold J, Pontarelli W. Long-term results following ankle arthrodesis for post-traumatic arthritis. JBJS 2001 83A: 219-28. [PubMed]
2. Mazur JM, Schwartz E, Simon SR Ankle arthrodesis, long term follow up with gait analysis. JBJS 1979 61A: 964-975. [PubMed]
3. Helm R, Stevens J. Long-term results of total ankle replacement. J Arthroplasty 1986 1: 271-277. [PubMed]
4. Kofoed H, Lundberg-Jensen A. Ankle arthroplasty in patients younger and older than 50 years: a prospective series with long-term follow-up. Foot Ankle Int 1999 20: 501-506. [PubMed]
5. Saltzman CL. Total ankle arthroplasty: state of the art. Instr Course Lect1999 48: 263-268. [PubMed]
6. Huang PJ, Fu YC, Lu CC, Wu WL, Cheng YM. Hindfoot arthrodesis for neuropathic deformity. Kaohsiung J Med Sci 2007 23: 120-127.[PubMed]
7. Mazur JM, Schwartz E, Simon SR. Ankle arthrodesis: Long-term follow-up with gait analysis. JBJS 1979 61A: 964-975. [PubMed]
8. Albert E. Zur Resektion des Kniegelenkes. Wien Med. Press, 1879 20: 705-708.
9. Abidi NA, Gruen GS, Conti SF. Ankle arthrodesis: indications and techniques. Am Acad Orthop Surg 2000 8: 200-209. [PubMed]
10. Cheng YM, Lin SY, Tien YC, Wu HS. Ankle arthrodesis. Kao Hsiung I Hsueh Ko Hsueh Tsi Chih 1993 9: 524-531. [PubMed]
11. Smith R, Wood PLR. Arthrodesis of the ankle in the presence of a large deformity in the coronal plane. JBJS 2007 89B: 615-619. [JBJS, Full article]
12. Ahlberg A, Henricson AS. Late results of ankle fusion. Acta Orthop Scand 1981 52: 103-105. [PubMed]
13. Boobbyer GN. The long-term results of ankle arthrodesis. Acta Orthop Scand 1981 52: 107-110. [PubMed]
14. Ahlberg A, Henricson AS. Late results of ankle fusion. Acta Orthop Scand 1981 52: 103-105. [PubMed]
15. Bishop AT, Wood MB, Sheetz KK. Arthrodesis of the ankle with a free vascularized autogenous bone graft: Reconstruction of segmental loss of bone secondary to osteomyelitis, tumor, or trauma. JBJS 1995 77A: 1867-1875. [PubMed]
16. Boobbyer GN. The long-term results of ankle arthrodesis. Acta Orthop Scand 1981 52: 107-110. [PubMed]
17. Buck P, Morrey BF, Chao EYS. The optimum position of arthrodesis of the ankle: A gait study of the knee and ankle. JBJS 1987 69A: 1052-1062. [PubMed]
18. Lynch AF, Bourne RB, Rorabeck CH. The long-term results of ankle arthrodesis. JBJS 1988 70B: 113-116. [PubMed]
19. Hopgood P, Kumar R, Wood PLR. Ankle arthrodesis for failed total ankle replacement. JBJS 2006 88B: 1032-1038. [PubMed]


Address correspondence to: Asst Professor, Dept of Orthopaedics, PES Medical College, Kuppam, Chittore dist, Andra Pradesh, India, 517425. Email: drnarayan999@yahoo.com, Mob: 00 91 7702990696

1  Asst. Professor, Dept. of Orthopaedics, PES Medical College, Kuppam, Chittore dist., Andra Pradesh, India, 517425.
2  Asst. Professor, Dept. of Orthopaedics, PES Medical College, Kuppam, Chittore dist., Andra Pradesh, India, 517425.

© The Foot and Ankle Online Journal, 2012

Clinical Review of Adhesive Capsulitis of the Ankle: An introductory article and clinical review

by Bilal Shamsi, BS, Jennifer-Nicole Falk, BS, Steven J. Pettineo DPT, OCS, CSCS, Sayed Ali MD, FRCR4

The Foot and Ankle Online Journal 4 (10): 2

Adhesive capsulitis is a well known ailment that most often affects the shoulder, but can occur in the hip, wrist, and the ankle. As it relates to the ankle joint, the condition is commonly referred to as ‘frozen ankle’ and presents as a challenge in both its diagnosis and treatment. Although there is much literature regarding the etiology, pathology, and treatment of ‘frozen shoulder’, there is little with regards to the ankle, with most being case reports. The purpose of this article is to provide a clinical review of the concept of adhesive capsulitis, its impact as it relates to the ankle, diagnostic criteria, and current treatment modalities.

Key words: Adhesive capsulitis, frozen ankle, ankle pain, adhesions.

Accepted: September, 2011
Published: October, 2011

ISSN 1941-6806
doi: 10.3827/faoj.2011.0410.0002


Adhesive capsulitis is a broad term that can be confusing at times since it is often used synonymously for “frozen shoulder”. In order to better understand adhesive capsulitis of the ankle, we begin with a brief review of a better documented phenomenon concerning the shoulder.

Adhesive capsulitis of the shoulder is a common condition that will cause pain and restrictions during active and passive range of motions (ROM).

Though motion loss is global, a typical capsular pattern is usually present with motion into external rotation being most limited followed by abduction and finally internal rotation. [1]

Frozen shoulder can be categorized into two categories: primary, or idiopathic, and secondary. Primary adhesive capsulitis presents without any underlying cause, while secondary adhesive capsulitis occurs as a result of other causative factors, such as trauma to soft tissue and bone. Pre-disposing factors to developing idiopathic frozen shoulder include diabetes, female, and being in the fifth or sixth decade of life. Incidence is reported as being 10-36% in the diabetic population, with a 40% chance of developing the condition if an individual is Type I diabetic. [1,2,3]

For the glenohumeral joint, 3 distinct phases have been described in staging this condition. The first is an early painful phase, or “freezing stage,” with a duration of 2 to 9 months. This is followed by an intermediate stiffening or adhesive phase, which has duration of 4 to 12 months. In this phase, patients typically experience increasing stiffness, but less pronounced pain. The final phase is known as the recovery, or “thawing” phase, which lasts anywhere from 5 to 24 months. Here, patients display a gradual return of movement. [3,4]

Adhesive Capsulitis of the Ankle (ACA) is infrequently reported in the literature, but the few reports that do exist suggest that it occurs secondary to trauma such as ankle or pilon fractures or chronic ankle sprains.

Some cases are thought to be idiopathic, or to have some underlying association with diabetes, inflammatory arthropathies, connective tissue disease, heart disease, infection, or autoimmune processes. [5,6,7]

Pathophysiology

With regards to pathophysiology, the literature between adhesive capsulitis of the shoulder and that of the ankle appears to be synchronous. Not only is the site of injury affected, but the entire joint capsule is disturbed, resulting in a global loss of motion.

Initially, there is proliferation of synovial inflammatory cells and infiltration of lymphocytes. Within 3 to 4 weeks, the capsular fibrous layer becomes thickened, destroying the integrity of the anterior and posterior joint recesses, and the presence of new collagen inhibits the availability of joint ROM. [1,6,8]

This proliferation of inflammatory infiltrate and the subsequent ankle joint contracture that follows is thought to be the result of cytokines, which allow for initiation and progression of the fibrous thickening process. Patients will often report a tight, sharp stretching sensation, and they may report a cracking, or popping sound with motion of the joint. [7]

Diagnosis

Currently, there exists no clinical criteria for diagnosing ACA; however, the literature does show some similarities with respect to patients presenting with frozen shoulder. Patients usually complain of ankle pain, swelling, and difficulty walking. The onset of symptoms is variable and may present anywhere from immediately after an incident to weeks later, when the patient resumes weight bearing and ambulation after having been immobilized for an extended amount of time. [5,6]

Observation of significant deficits of ankle ROM is the key to further investigation into a possible diagnose of adhesive capsulitis. A study by Lui, et al., recorded ankle dorsiflexion and plantarflexion in patients with diagnosed ankle adhesive capsulitis and found that ankle dorsiflexion was limited to an average of 1°, while plantar-flexion averaged 16° pre-op. In addition to limited ankle ROM, calf atrophy may also be present if there was prolonged immobilization. [5]

Currently, conventional arthrography is the most accepted diagnostic tool. In 1976, Goldman, et al., proposed arthrography criteria for diagnosing adhesive capsulitis of the ankle, which included the following:

1) decreased joint space volume (n = 10-25 mL fluid, pathologic accepts < 3-5 mL)
2) obliterated ankle recesses (anterior & posterior)
3) resistance with injection of contrast
4) backflow of contrast medium [8]

Due to convenience, and the invasive nature of the procedure, arthrography is not typically the diagnostic tool of choice amongst physicians, but has demonstrated value in evaluating shoulder adhesive capsulitis. [9] Radiographs are nonspecific and are, therefore, of no benefit in diagnosing adhesive capsulitis. [5]

Although there is no established criteria for diagnosing ACA on magnetic resonance imaging (MRI), in the appropriate clinical setting a paucity of ankle joint fluid and thickening of the joint capsule on MRI (Figs. 1 and 2), as seen in conventional ankle arthrography and non-contrast shoulder MRI in shoulder adhesive capsulitis, will raise the suspicion for ACA. Since there is often a communication between the posterior subtalar joint and the ankle joint, there can also be a paucity of fluid in the posterior recess of the posterior subtalar joint. (Figs. 1 and 2) Further work is required to establish the role of ankle MRI in the diagnosis of ACA. [8,9]

Figure 1  Sagittal FSE T2 weighted image in a patient with post traumatic and postsurgical ACA showing complete paucity of synovial fluid in the ankle joint (long arrow) and in the posterior subtalar joint (short arrow). Note magnetic susceptibility artifact (star) from surgical hardware.

Figure 2  Normal ankle with normal fluid in the ankle (long arrow) and posterior recess of the posterior subtalar joint (short arrow).

Additionally, a hallmark technique in the diagnosis and treatment at the level of the shoulder is the feeling of a capsular end feel with passive range of motion testing, or in stage 3; a rigid end point. [10]  This diagnostic exam technique along with acknowledging restricted joint play on attempted anterior, posterior, and distraction joint mobilization can be applied in the diagnostic approach to the ankle as well.

Treatment

In order to understand the treatment of the ankle, it is necessary to review how treatment is based on staged criteria for frozen shoulder. In stage 1, which involves no capsular tightness but is progressively painful, the treatment strategy consists of soft tissue mobilizations, with an emphasis on reducing inflammation as no adhesions have yet formed. In the adhesive stage 2, there is an emphasis on reducing inflammation, and minimizing capsular adhesions through active and passive range of motion exercises as well as joint mobilization techniques. In stage 3, there is an eventual slow and steady recovery of motion, with the course of disease taking anywhere from one to three years to resolve fully. [10,11]

Currently, treatment options for the ankle include physical therapy focusing on active and passive range of motion as well as ankle joint mobilization techniques. (Figs. 3A, 3B and 3C) Shaffer, et al., showed that after 8 weeks of immobilization post-ankle fracture, 10 weeks of mobilization with physical therapy can successfully restore ROM, strength, and function of the ankle joint. [12] If conservative care is unsuccessful, arthroscopic debridement may be necessary. Lui, et al., found that ankle ROM may improve up to 18° with DF and up to 23° with PF post-arthroscopic debridement.

Figure 3A, 3B and 3C   From top to bottom: Posterior talo-crural glide mobilization for dorsiflexion range of motion return. (A) Anterior talo-crural glide mobilization for plantarflexion range of motion return. (B)  Talo-crural joint distraction mobilization. (C)

They also showed that corticosteroid injections were ineffective alone.[5] Based on current understanding of the pathological process of ACA, Cui, et al., proposed a diagnostic and treatment algorithm which we have produced here.(Fig. 4)

Figure 4  A diagnostic and treatment algorithm adapted from Cui, et al., Copyright © 2011 by the American Orthopaedic Foot and Ankle Society, Inc., originally published in Foot & Ankle International,  26(8):606 and reproduced here with permission.

Conclusion

Adhesive capsulitis of the ankle is a difficult condition to diagnose and manage. Careful review of existing literature reveals limited research on the subject, with most studies being directed towards adhesive capsulitis of the shoulder. Such shoulder pathology is host to wide range of etiologies, resulting in decreased shoulder ROM (External rotation > Abduction > Internal rotation) and increased pain along all aspects of the shoulder joint capsule.

Though adhesive capsulitis of the ankle appears to present in a similar fashion, there is currently no clinical criteria to properly diagnose or stage ACA. Today, radiographic arthrograms remain the standard for definitive diagnosis, although their use is limited due to the invasive nature of the procedure. Goldman, et al., defined ACA based on similar arthrogram findings between 3 patients suspected of ACA.

With ACA presenting similarly to the pathology seen the shoulder (decreased ROM and increased pain around the involved joint), current treatment options have followed similar suit. Currently, physical therapy, focusing on active and passive range of motion, as well as ankle joint mobilization techniques, is showing to be the most beneficial for patients identified early on.

Further controlled studies are needed in order to better properly diagnose and treat ACA. Given the serious lack of literature regarding this condition, more studies are needed and perhaps more rigorous diagnostic criteria to clinically diagnose ACA with more modern radiographic techniques.

More importantly, better treatment protocol can be implemented and the possibility of staging the condition would aid physicians in earlier intervention, thereby preventing progression.

References

1. Tasto J.P., Elias D.W. Adhesive capsulitis. Sports Med Arthrosc Rev 2007 15: 216-221.
2. Rookmoneea, M., Dennis, L., Brealey, S. The effectiveness of interventions in the management of patients with primary frozen shoulder. JBJS 2010 92B: 1267-72.
3. Manske, R.C., Prohaska, D. Diagnosis and management of adhesive capsulitis. Curr Rev Musculoskelet Med 2008 1:180-189.
4. Buchiner R Green, S. Effect of arthrographic shoulder joint distension with saline and corticosteroid for adhesive capsulitis. Br J Sports Med 2004 38:384-385.
5. Lui TH, Chan WK, Chan KB. The arthroscopic management of frozen ankle. J Arthro Rel Surg 2006 22: 283-286.
6. Cui Q, Milbrandt T, Millinton S, Anderson M, Hurwitz S. treatment of posttraumatic adhesive capsulitis of the ankle: A case series. Foot Ankle International 2005 26: 602-606.
7. Banks A. Downey MS. Martin DE, Miller SJ. McGlamry’s Foot & Ankle Textbook 2001 1:3 1095-1097.
8. Goldman, A.B., Katz, M.C. Posttraumatic adhesive capsulitis of the ankle: Arthrographic diagnosis. Am J Roentgenol 1976 127: 585-599.
9. Jung JY, Jee WH, Chun HJ, Kim YS, Chung YG, Kim JM. Adhesive capsulitis of the shoulder: evaluation with MR arthrography. Eur Radiol 2005 16: 791-796.
10. Andrews J, Wilk K, Reinold M. The Athlete’s Shoulder 2008, Churchill Livingstone Press 2: 293-301.
11. Davies GJ, Wilk K, Ellenbecke T, Tyler T, Reinhold M. Current concepts of orthopaedic physical therapy. 2006 (2). The shoulder: physical therapy patient management utilizing current evidence. Orthopedic Section APTA: 38-42.
12. Shaffer MA, Okereke E, Esterhai JL, Elliott MA, Walter GA, Yim SH, Vandenborne K. Effects of immobilization on plantar-flexion torque, fatigue resistance, and functional ability following an ankle fracture. Phys Ther 2000 80:769-780.


Address correspondence to: Temple University School of Podiatric Medicine, 8th & Race St., Philadelphia, PA 19107. Department of Podiatric Medicine and Orthopedics
Email: spettineo@tuspm.temple.edu

1  4th year student, Temple University School of Podiatric Medicine. Philadelphia, PA
2  4th year student, Temple University School of Podiatric Medicine, Philadelphia, PA
3  Clinical Assistant Professor, Temple University School of Podiatric Medicine, Philadelphia, PA
4  Assistant Professor, Department of Radiology, Temple University School of Medicine, Philadelphia, PA

© The Foot and Ankle Online Journal, 2011

Distal Femoral Locking Plates for Tibiotalocalcaneal Fusions in the Charcot Ankle: A retrospective study

by Sarah Shogren, DPM, Sara Zelinskas, DPM, Byron Hutchinson, DPM, Vineet Kamboj, DPM

The Foot and Ankle Online Journal 4 (8): 3

This paper presents a retrospective case series with chart and radiographic review of four patients with Charcot neuroarthropathy and associated ankle valgus. All four patients underwent tibiotalocalcaneal (TTC) arthrodesis using a distal femoral locking plate combined with external ring fixation for rigid axial compression. A 12 month follow-up was obtained. All four TTC arthrodeses were performed by the same surgeon (BH) including preoperative and postoperative evaluation and care. Outcomes were deemed successful with evidence of radiographic consolidation across the fusion sites. Outcomes were considered failures in the presence of non-union or amputation. Three patients had satisfactory outcomes with only minor complications. One patient had failure of the procedure with development of osteomyelitis and ultimately had a below knee amputation. Although this was a small review, on average, osseous consolidation was appreciated in 77 days for those patients that had successful outcomes. Larger retrospective or even prospective studies are needed to confirm the use of tibiotalocalcaneal arthrodesis using a distal femoral locking plate and external ring fixation in Charcot arthropathy. This small case series shows promise to the efficacy of distal femoral locking plates for tibiotalocalcaneal fusions.

Key words: Tibiotalocalcaneal fusions, Charcot Ankle, distal femoral locking plates, ankle valgus

Accepted: July, 2011
Published: August, 2011

ISSN 1941-6806
doi: 10.3827/faoj.2011.0408.0003


Charcot neuroarthropathy when left untreated can progress to combined deformity of the ankle and subtalar joints. The treatment goal in these cases is to produce a stable, plantigrade foot that is braceable.

When conservative treatments such as bracing and shoe gear modifications fail, tibiotalocalcaneal (TTC) arthrodesis is typically the salvage procedure of choice. Bone quality in Charcot patients is often poor due to osteoclastic activity. The decision on the type of stable fixation to use can often be a challenge.

Ahmad et al., described humeral locking plates to have a high rate of fusion at 94.1%. [1] Several forms of stable fixation have been used to achieve TTC arthrodesis, including screws, intramedullary nails, [3] blade plates, [3] external fixation, [4,6] and humeral locking plates, [5] to name a few.

According to Pelton and Carvaggi, intramedullary nails are a good method for TTC arthrodesis with 88% and 92.8% fusion rates respectively. [2,7]

Distal femoral locking plates, like humeral locking plates, are not made specifically for this reconstruction, but are stable with a viable architecture to encompass both ankle and subtalar joints. The locking plate technology allows for a more stable construct in patients with questionable bone quality and combined deformities as in Charcot neuroarthropathy. (Figs. 1A and 1B)

 

Figure 1A and 1B  Pre-operative radiograph (A) and patient (B) with combined Charcot ankle valgus and subtalar deformities.

The purpose of this retrospective chart review was to evaluate the efficacy of distal femoral locking plates for tibiotalocalcaneal fusions.

Methods

A retrospective chart and radiographic review of four patients with Charcot neuroarthropathy with associated ankle valgus was studied. Inclusion criteria for this case series were patients with Charcot neuroarthropathy and a painful deformity at the ankle and subtalar joints. Exclusion criteria included active infections, significant bone loss from trauma and osteonecrosis. All patients failed conservative treatments, including bracing and shoe gear modifications, and all requested definitive treatment. Due to the retrospective review of these patients pain scales were not compared before and after surgery.

All four patients underwent tibiotalocalcaneal arthrodesis using a distal femoral locking plate combined with external ring fixation for rigid axial compression. Follow-up was obtained for up to 12 months. Frames were removed after approximately three months, after which patients began progressive weightbearing in a postoperative boot.

All four TTC arthrodeses were performed by the same surgeon, including preoperative and postoperative evaluation and care. Outcomes were deemed successful with evidence of radiographic and clinical evidence of consolidation across the fusion sites. Outcomes were considered failures in the presence of non-union or amputation.

Surgical Method

A linear incision was made adjacent to the course of the fibula. An oblique osteotomy was made at the distal third of the fibula. The fibula was resected and removed from the operative table. The tibiotalar joint was then resected with the sagittal saw. (Figs. 2A and 2B) An ankle arthrotomy was performed medially and the medial malleolar articular surface was resected with a sagittal saw forming a miter at the medial aspect of the tibial surface. (Fig. 3) The subtalar joint was denuded of cartilage using a curette.

 

Figures 2A and 2B  Surgical resection of the fibula (A) is performed prior to resection of the tibiotalar joint. (B)

Figure 3  Application of the distal femoral locking plate to stabilize the Charcot ankle is technically simple.

The tibiotalocalcaneal arthrodesis was temporarily fixated with a Steinman pin placed through the plantar aspect of the foot crossing both joints into the tibia. The distal femoral locking plate was applied to the lateral aspect of the tibia, talus and calcaneus. Multipotential cellular bone matrix as well as platelet rich plasma were added to the autogenous bone graft which was placed in the tibiotalar arthrodesis site.

Accurate placement of the plate was verified using intraoperative fluoroscopy, and the Steinman pin was removed from the plantar foot. The circular fixator frame was then applied to the lower extremity with wires and half pins using standard technique. (Fig. 4) Axial compression was applied through the external fixator.

Figure 4:  Application of external fixator to aid in axial compression of the Charcot Ankle.

Outcomes

All four patients remained non-weightbearing for roughly three months in the external fixator. The fixator was then removed and patients remained non-weightbearing for an additional two weeks in a CAM boot. Patients began progressive weightbearing in a post-operative boot to full weightbearing for 3 additional months.

Once radiographic consolidation was seen, patients were progressed to full weightbearing in a CROW (Charcot Restraint Orthotic Walker) boot or similar device. These patients were ambulating with minimal pain at the end of the postoperative recovery period and able to perform their daily living requirements.

Three patients (75%) had satisfactory outcomes with only minor complications. Two patients (50%) required blood transfusion following surgery, and one (25%) had mild pin tract infections which responded quickly to oral antibiotics. One patient (25%) had failure of the procedure with development of osteomyelitis and ultimately had a below knee amputation. This patient did not have an active infection at the time of surgery however; this patient had a history of prior osteomyelitis from previous procedures and was in renal failure. These pre-operative factors ultimately could have contributed to the patients post- operative wound dehiscence and ultimate recurrence of osteomyelitis. On average, osseous consolidation was appreciated in 77 days for those patients that had successful outcomes. (Fig. 5) The patients with successful outcomes were able to ambulate pain free in a CROW boot. Table 1 summarizes the four patient outcomes.

Figure 5  Clinical presentation during 3-month course in external fixators.

Table 1  Tibiotalocalcaneal fusion outcomes for the four patients included in this retrospective case series.

Discussion

Approaching the treatment for a patient with Charcot arthropathy can be very difficult and controversial. These patients generally have multiple comorbidities making healing potential for ulcerations, as well as surgical procedures, more difficult. If ulceration prevention and adequate mobility is achieved using a bracing method this should be done as first line treatment. [8]

Attaining rigid fixation in a tibiotalocalcaneal arthrodeses can be difficult in patients with Charcot neuroarthropathy. Chiodo, et al., in 2003, compared the biomechanical properties of blade-plates and intramedullary rod fixation for TTC arthrodesis, and found the blade-plate to be a more rigid construct. [3] It is important to note that while blade plates do give a more rigid construct, they do not offer multiple planes of fixation. Intramedullary rods have been shown to have high fusion rates however they are technically difficult with risk of stress risers, fractures and neurovascular injury.

Pinzure and Kelikian reported 21 ankles with Charcot arthropathy treated using the intramedullary nail. Ninety per cent of these patients went on to fusion. The authors concluded this as an excellent means of obtaining ankle fusion in Charcot patients. In comparison, another form of fixation are locking plates which are less technically demanding and offer fixation in multiple planes. [5] Fixation in multiple planes is important because it limits rotational forces. Ahmad, et al., proved that using a PHILOS locking plate to achieve TTC arthrodesis does provide bone union and deformity correction. In patients with Charcot neuroarthropathy, greater rigidity is ideal to maintain the correction through the arthrodesis and we believe the locking plate will do this.

The greatest limitation to our case series is a small population size. Further research needs to be done in a prospective manner. This would give the advantage of determining a standardized pre-operative pain score (AOFAS) which is another limiting factor in this retrospective review.

The use of distal femoral locking plates for tibiotalocalcaneal arthrodesis is a viable rigid internal form of fixation. The locking plate technology allows for a stable construct in patients with questionable bone quality. In comparison to other forms of arthrodesis, it has a more rigid construct with better boney apposition and fixation in multiple planes.

In summary, the use of distal femoral locking plates in conjunction with external fixation is an acceptable option to create a plantigrade braceable foot as a limb salvage procedure in Charcot neuropathy patients.

References

1. Ahmad J, Pour AE, Raikin SM. The modified use of a proximal humeral locking plate for tibiotalocalcaneal arthrodesis. Foot Ankle International 2007 28: 977-983.
2. Carvaggi C. Intramedullary compressive nail fixation for the treatment of severe Charcot deformity of the ankle and rearfoot. J Foot Ankle Surg 2006: 45(1), 20-24.
3. Chiodo CP, Acevedo JI, Sammarco VJ, Parks BG, Boucher HR, Myerson MS, Schon LC. Intramedullary rod fixation compared with blade-plate-and-screw fixation for tibiotalocalcaneal arthrodesis: A biomechanical investigation JBJS 2003 83A: 2425-2428.
4. Colgrove RC, Bruffey JD. Ankle arthrodesis: Combined internal-external fixation. Foot Ankle International 2001 22: 92-97.
5. Lowery NJ, Alison JM, Burns PR. Tibialtalocalcaneal arthrodesis with the use of a humeral locking plate. Clinics Podiatric Medicine Surgery. 2006 26: 485-492.
6. Misson JR, Anderson JG, Bohay DR, Weinfeld SB. External fixation techniques for foot and ankle fusions. Foot Ankle Clinics 2004 9: 529-539.
7. Pelton K. Tibiocalcaneal arthrodesis using a dynamically locked retrograde intramedullary nail. Foot Ankle International 2008: 27: 759-763.
8. Pinzure M. Surgical versus accommodative treatment for Charcot arthropathy of the midfoot. Foot Ankle International 2004 25: 545-549.
9. Pinzure MS, Kelikian A. Charcot ankle fusion with a retrograde locked intramedullary nail. Foot Ankle International 1997: 18, 699-704.


Address correspondence to: Sarah Shogren, DPM, Franciscan Foot and Ankle Institute, 34509 9th Ave S. Ste 306 Federal Way WA 98003. Email: SarahShogren@fhshealth.org

1-4  Franciscan Foot and Ankle Institute, 34509 9th Ave S. Ste 306 Federal Way WA 98003.

© The Foot and Ankle Online Journal, 2011

Hardware Related Pain and Hardware Removal after Open Reduction and Internal Fixation of Ankle Fractures

by Johan H. Pot1  , Remco J.A. van Wensen1, Jan G. Olsman1

The Foot and Ankle Online Journal 4 (5): 1

Objectives: To assess the incidence of hardware related pain after open reduction and internal fixation (ORIF) after ankle fractures through functional outcomes scores in patients with or without hardware related pain. Design: Retrospective study.
Setting: Regional trauma center.
Patients: One hundred and seventy six patients undergoing ORIF of an ankle fracture with a minimal follow up of 18 months were sent questionnaires. In total, 80 responding patients were available for analysis.
Main Outcome Measurements: Visual Analog Pain Score, Foot and Ankle Outcome Score (FAOS).
Results: In seventeen patients (21%), the hardware was removed because of pain. In another seventeen patients (21%), the hardware was not removed, but pain was reported. Patients with hardware related pain had significantly worse functional outcome scores than patients without hardware related pain. After elective hardware removal, pain reduction was achieved in 71 % of the patients. Mean Visual Analog Score was 7.0 before and 3.9 after elective hardware removal for pain.
Conclusions: Hardware related pain is a significant issue after ORIF of ankle fractures. Patients with hardware related pain have significantly worse functional outcome scores. Although pain reduction is achieved in 71% of the patients after elective hardware removal, a substantial number of patients have persistent complaints. Patients should be well informed about the expectations and risks of elective hardware removal.

Key words: Hardware, hardware removal, hardware related pain, ankle fracture, ORIF ankle, FAOS.

Accepted: April 2011
Published: May 2011

ISSN 1941-6806
doi: 10.3827/faoj.2011.0405.0001


Fractures of the distal tibia and fibula are one of the most common types of fractures in adults. [1] Whereas stable and non or minimally displaced fractures can be treated with cast immobilization, unstable dislocated ankle fractures require open reduction and internal fixation (ORIF) with plate and screws.

Long term functional outcome is satisfying in most patients, but a number of patients have persistent ‘hardware related’ complaints and tenderness that ‘require’ elective hardware removal. Aside from painful hardware, some asymptomatic patients also want their hardware removed for other reasons. Although hardware removal is frequently undertaken, it is not without risk and the results are often unpredictable. [2]

The more commonly reported risks of hardware removal are iatrogenic (nerve) injury, infections, delay in wound healing and re-fractures. In addition to medical considerations there is also an economic impact such as physician costs, hospital fees, patient loss of work and productivity. [2] Reports in literature are not consistent concerning the incidence of painful hardware and the outcome and pain relief after hardware removal. [3-5] This study was designed to document the incidence of late pain after ORIF of ankle fractures and to analyse the outcome, expectations and complications after hardware removal.

Patients and Methods

In October 2010, all patients with surgically treated unstable ankle (malleolar) fractures between April 2007 and April 2009 were reviewed. A total number of 176 patients were included with a minimum follow up of 18 months assuming the end stage of rehabilitation after the ankle fracture was achieved. Demographic data, patient’s age, sex and medical history, were obtained from the hospital database and clinical notes. All patients were sent a questionnaire. One part consisted of the Foot and Ankle Outcome Score (FAOS) which is designed to asses a number of foot and ankle related problems. It consists of 5 subscales; Pain, other Symptoms, Function in daily living (ADL), Function in sport and recreation (Sport) and foot and ankle-related Quality of Life (QOL). The second part of the questionnaire consisted of specific questions about pain at the site of the hardware material and specific questions about the removal of osteosynthesis material. Patients that underwent elective hardware removal were asked to indicate pain before and after hardware removal by a Visual Analog Scale (VAS) pain score. Surgical stabilization consisted of open reduction and internal fixation (ORIF).

All surgeries were performed in the Jeroen Bosch Hospital, a 600 bed teaching hospital, by or under direct supervision of one of the trauma surgeons. AO-fixation material was used including small-fragment plates and screws and sometimes K-wires on the fibula or tibia if necessary. Fixation of the posterior malleolus was performed if more than one-third of the joint surface on the lateral radiograph was affected. Syndesmotic fixation was performed in cases of widened mortises on stress-testing after ORIF. Most of the time, one hook test was performed.

Postoperative therapy was overall direct functional and non-weight bearing for a minimum of six weeks. Sometimes a below-the-knee plaster cast was applied for 1 week due to wound protection. After 6 weeks, patients were allowed to bear weight as tolerated and were referred for outpatient physical therapy if necessary. Patients that were treated with a syndesmotic screw remained non-weight bearing until the syndesmotic screw had been removed. According to one of the trauma-surgeons, weight bearing was allowed after 6 weeks without removal of the syndesmotic screw. Indications for hardware removal include infection, failure of osteosynthesis material, severe pain and tenderness on the location of hardware and specific demands in asymptomatic patients. Before the procedure was performed, fracture consolidation was assessed by a radiograph. Functional outcome scores for each FAOS subscale were correlated with the presence of local pain. Statistical analysis was performed by using the Student t test. Results were considered significant if p

Results

The questionnaire was sent to 176 patients. The response rate was 46% (n=80 patients). In the response group there were 24% males and the mean age was 44 ±23 years. The mean follow up was 30 months and 29 patients (36%) reported hardware removal. (Table 1) The indication for removal was pain or discomfort in 60% (n=17).

Table 1 Patients with hardware removed and painful or painless hardware.

In one patient it was removed because of infection and syndesmotic screws were removed in 37% (n=11) as a standard procedure before weight bearing was allowed. In patients that did not have osteosynthesis material removed (n=51), 33 % had local pain or tenderness on the location of the osteosynthesis material. In total, 34 patients had pain at the hardware site after ORIF (42%). (Table 1)

FAOS score were compared between patients having local pain or tenderness overlying the hardware, patients who did not and patients that underwent hardware removal because of pain. Lower scores indicate a lower functional level and these scores are shown in Figure 1.  The FAOS scores of patients without hardware related pain was significantly higher in all the 5 subscores. (P<0.05) compared to patients with hardware related pain. Patients that underwent elective hardware removal however did not have significantly different scores than those with painful hardware.

Figure 1 FAOS scores of all patients with surgically treated ankle fractures. Patients without painful hardware have significantly higher FAOS score in all subscores compared to patients with hardware related pain (removed or not).

In 71% of the patients that underwent elective hardware removal because of pain, reported a decrease of their complaints after hardware removal.

These patients had a mean pain VAS (visual analog scale) of 7.0 (±2.1) before hardware removal and a mean VAS of 3.9 ±2.8 after hardware removal. This was a significant pain reduction. (p=<0.05)  However in 27% of the patients VAS scores did not change after elective hardware removal and only 24% became pain-free with a VAS of 0. (Table 2)

Table2   Change in pain after elective hardware removal (for painful hardware).

Recovery time from the secondary surgery was approximately 9 weeks (±10). Range of motion improved in 56% of the patients, whereas 6 % reported a decreased range of motion after hardware removal. 39% of the patients did not notice any change in range of motion. In 20% of the patients a superficial wound infection was reported that required additional treatment. No re-fractures or pseudoarthrosis were reported. Furthermore 25 % of the patients reported new complaints after hardware removal, such as other pain or instability.

Discussion

After a mean follow up of 2.5 years 21% of the patients reported to have their hardware removed because of pain and 21% of the patients had significant and specific local pain at the site of the hardware. Obviously, hardware is not always the main contributor of this pain as scar tissue, post-traumatic changes and malalignment can also play a role. This should not be underestimated by (orthopedic) trauma surgeons. One study found similar results with 31% painful hardware and 17% removal. [4] However other studies report lower rates of painful hardware [6,7], especially among the elderly.8 Patients with painful hardware and also patients who had their hardware removed have significantly lower functional scores than patients without complaints.

In fact, all FAOS subscores were significantly worse in these patients suggesting a serious impact on quality of life and on daily activities. This is supported by Brown, et al., [4] who found significantly better outcome scores in patients that did not have hardware related pain. The results of hardware removal are comparable to Jacobsen, et al., [3] who found a 75% improvement after hardware removal. Brown on the other hand found a pain reduction in only 50% of the patients. A success rate of 71% in this study appears to be a promising statistic. However, in 76% of patients, they do not become pain free and have persistent pain. Patients should be informed correctly about the significant risk of persistent pain.

Range of motion is similar or better in most patients, but 25% of the patient had new or other complaints after removal of the hardware. Other studies that do not specifically investigate hardware removal of the ankle but hardware removal in general find other results. A prospective review about outcome of different types of hardware in different body parts found a significant pain relief, improved function and improved SMFA scores (Short Musculoskeletal Function Assessment Questionnaire). [5] Hardware in ankles, however can lead to location specific problems due to mechanical characteristics of the ankle and the lack of surrounding tissue in the ankle. Indications for elective hardware removal could be a pitfall. Local tenderness and pain can be due to the hardware, but can also be caused by posttraumatic changes in the ankle. Hence the surgeon and patient should also be well informed about specific complaints and a radiograph is mandatory to evaluate posttraumatic changes. If in doubt, an intra-articular injection with a local anaesthetic can help to differentiate between intra articular (post traumatic) and extra-articular (e.g. hardware) causes. Arthroscopic evaluation can be useful to assess degenerative changes, intra-articular malalignments or to remove loose bodies or adhesions.

Routine removal of hardware in patients with surgically treated ankle fractures is not recommended, because most patients do not have hardware related pain or may have minimal symptoms. Not only would routine hardware removal lead to more complications, increased health care costs, lost work and productivity, it can also lead to new complaints or increased pain. [2]

The type of implant or material may influence the amount of hardware related symptoms. Obviously bulky implants are more likely to cause symptoms, but smaller implants can lead to bony overgrowth which makes hard removal more difficult. Intramedullary nailing may be beneficial in some fractures, because soft tissue is less manipulated and also these implants can be easier to remove. [9]

Biodegradable osteosynthetic material have been proposed as a new method to avoid a secondary procedure to remove the material. [10] Although materials are improving, clinical results thus far are not encouraging. Petrisor, et al., concluded that patients with biodegradable osteosynthesis material had a higher risk (OR 2.63) for adverse events, such as osteosynthesis failure, compared to metal implants in patients with ankle fractures. [11] Ahl, et al., [10] found that patients treated with traditional titanium implants had better radiological measured stability, although clinical results did not differ. It is not clear whether these biodegradable materials result in less tenderness on palpation in short and long term.

Conclusion

Hardware related pain is a big issue in patients with a surgically treated ankle fracture that must not be underestimated. Functional outcome scores are significantly worse in patients with hardware related pain. Pain reduction can be achieved in 71% of the patients with hardware related pain but only 24% of the patients became pain-free after hardware removal. Similar results were found in literature. The most important conclusion that can be drawn is that the patient should be informed correctly about the risks and expectations of this second operation.

References

1.Daly PJ, Fitzgerald RH, Jr Melton LJ, Ilstrup DM. Epidemiology of ankle fractures in Rochester, Minnesota. Acta Orthop Scand 58: 539-544, 1987.
2.Busam ML,Esther RJand Obremskey WT. Hardware removal: indications and expectations. J Am Acad Orthop Surg 14: 113-120, 2006.
3.Jacobsen S,Honnens de Lichtenberg M,Jensen CM, Torholm C. Removal of internal fixation–the effect on patients’ complaints: a study of 66 cases of removal of internal fixation after malleolar fractures. Foot Ankle Int 15: 170-171, 1994.
4.Brown OL, Dirschl D, Rand Obremskey WT. Incidence of hardware-related pain and its effect on functional outcomes after open reduction and internal fixation of ankle fractures. J Orthop Trauma 15: 271-274, 2001.
5.Minkowitz RB,Bhadsavle S,Walsh M, Egol KA. Removal of painful orthopaedic implants after fracture union. JBJS 89A: 1906-1912, 2007.
6.Bostman O and Pihlajamaki H, Routine implant removal after fracture surgery: a potentially reducible consumer of hospital resources in trauma units. J Trauma 41: 846-849, 1996.
7.Michelson JD. Fractures about the ankle. JBJS 77A: 142-152, 1995.
8.Koval KJ,Zhou W,Sparks MJ, Cantu RV, Hecht P, Lurie J. Complications after ankle fracture in elderly patients. Foot Ankle Int 28: 1249-1255, 2007.
9.Guo JJ,Tang N,Yang HL, Tang TS. A prospective, randomised trial comparing closed intramedullary nailing with percutaneous plating in the treatment of distal metaphyseal fractures of the tibia. JBJS 92B: 984-988, 2010.
10. Ahl T, Dalen N, Lundberg A, Wykman A. Biodegradable fixation of ankle fractures. A roentgen stereophotogrammetric study of 32 cases. Acta Orthop Scand 65: 166-170, 1994.
11.Petrisor BA, Poolman R, Koval K, Tornetta P 3rd, Bhandari M; Evidence-Based Orthopaedic Trauma Working Group. Management of displaced ankle fractures. J Orthop Trauma 20: 515-518, 2006.


Address correspondence to: Johan Pot, Jeroen Bosch Hospital, Location Groot Ziekengasthuis, Postbus 90153, 5200 ME ’s-Hertogenbosch, The Netherlands. Email: johanhpot@gmail.com

1  Jeroen Bosch Hospital, ’s-Hertogenbosch, the Netherlands. Department of Surgery, Postbus 90153, 5200 ME ’s-Hertogenbosch The Netherlands. tel: (+31) 73-6992000; fax:(+31) 73-6992163.

© The Foot and Ankle Online Journal, 2011