Tag Archives: Arthrodiastasis

Management of a dislocated talar dome fracture with ankle arthrodiastasis and open reduction internal fixation: A case report

by Charles A. Sisovsky, DPM, AACFAS1*; Carl A. Kihm, DPM, FACFAS2

The Foot and Ankle Online Journal 13 (4): 7

Osteochondral lesions of the talus (OLT) can be acute or chronic with mechanisms of injury and treatment protocols that have been well-described. Current treatment options for OLT depend on severity and chronicity. Treatment options for OLT consist of bracing, steroid injections, arthroscopic debridement with microfracture, osteochondral transfer, structural allograft, arthrodiastasis, arthrodesis or total ankle arthroplasty. Although mechanisms are similar, talar dome fractures have been less frequently presented in our literature. Displaced intra-articular fractures often require operative management although these procedures have not been detailed in the literature due to the rarity of the injury. This case report describes the surgical management of a 19-year-old male who sustained a dislocated and rotated lateral talar dome fracture after an inversion ankle injury while playing basketball. Long-term follow-up of our patient show an excellent, asymptomatic outcome without limitations at his 18-month follow-up visit.

Keywords: arthrodiastasis, external fixation, osteochondritis, syndesmosis, talus fracture, transchondral fracture

ISSN 1941-6806
doi: 10.3827/faoj.2020.1304.0007

1 – Fellowship-trained Foot and Ankle Surgeon, American Health Network, OptumCare, Department of Foot and Ankle Surgery, 2108 State Street, New Albany, IN 47150
2 – Attending surgeon at Norton Audubon Hospital, Faculty of the Kentucky Podiatric Residency Program, Private Practice, 3 Audubon Plaza Drive Suite 320, Louisville, KY 40217
* – Corresponding author: csisovsk@gmail.com

Osteochondral lesions of the talus (OLT) have been thoroughly discussed throughout the literature and describe pathologies to include transchondral lesions, osteochondral lesions, and talar dome fractures. These lesions typically involve the talar cartilage and subchondral bone and are typically caused by a single or multiple traumatic events, leading to partial or complete detachment of the fragment [1]. These fractures comprise approximately 0.1-0.85% of all fractures and most occur as a result of high-energy trauma, such as motor vehicle accidents [2-3]. Talar dome lesions or osteochondritis dissecans were first described by Berndt and Harty in the ankle in 1959 [4]. Current treatment options for OLT range from non-surgical treatment with cast immobilization to surgical excision and microfracturing. Newer techniques include osteochondral autograft transplantation and autologous chondrocyte implantation. The goal of these treatments is to restore the anatomic alignment of the articular surfaces in order to diminish long-term pain and swelling, and to improve function. The surgical management of large, displaced talar dome fractures is difficult in that with the tight joint confines, anatomic reduction may require ankle joint distraction to achieve proper reduction. Both arthroscopic and open exposures are considered regardless of whether ankle arthrodiastasis is utilized. Then, once reduced, optimal fixation placement is also challenging due to the tight joint confines and since fixation must not be detrimental to the articular surfaces or prominent or impinge the ankle joint.

In this case, we present the surgical management we utilized to achieve open reduction internal fixation of a dislocated lateral talar dome fracture with external fixation arthrodiastasis. Since anatomic reduction was achieved and our patient had an excellent long-term outcome, here, we present the surgical technique employed which may be useful in similar, future displaced lateral talar dome cases as these are rarely described in our literature [5-6]. Our case is unique in that we described the surgical management of a completely dislocated talar dome fracture with the use of bioabsorbable pins and ankle joint distraction.

Case Report

A healthy 19-year-old male inverted his ankle while playing basketball, when landing after jumping. Immediately afterwards, he was unable to bear weight. He went to the emergency department where radiographs demonstrated a dislocated lateral talar dome fracture (Figure 1). A CT scan was ordered which confirmed that the fracture segment, which measured 2.2 x 1.3 x 0.6 cm, was dislocated and rotated 180 degrees (Figure 2). The patient was made non-weight bearing while soft tissues were managed for 2 weeks.

Surgical management of the lateral talar dome fracture dislocation started with application of a delta frame external fixation construct to manually distract the ankle joint and maintain distraction during the postoperative period. The tibial tuberosity was palpated and four fingerbreadths were measured and this was the entry point of the first trans-tibial pin (Arthrex, Naples, FL). A 1 cm longitudinal skin incision was made using a #15 blade. Blunt dissection was then carried down to the level of bone using a curved hemostat. Next, the tibia was pre-drilled and a 5.0 mm tibial Schanz pin was inserted using a T-handle. The multi-pin clamp was then applied to the tibial Schanz pin and used as a drill guide to insert the second tibial Schanz pin which was inserted next. Utilizing fluoroscopic imaging, the trans-tibial pins were noted to be bi-cortical and of appropriate length and orientation. Next, attention was directed to the medial aspect of the calcaneus where 1 cm longitudinal skin incision was made using a #15 blade.

IMG_2339 2.png

Figure 1 Preoperative radiograph showing a completely displaced talar dome fracture.

Blunt dissection was carried down to the level of bone using a curved hemostat. Utilizing fluoroscopic imaging, a 6.0 mm trans-calcaneal pin was then inserted. The tibial and calcaneal clamps were then connected with carbon fiber bars. While the ankle was maximally distracted, with manual distraction of the transcalcaneal pin, the assistant surgeon locked the construct into place.

Next, an open incisional approach allowed for visualization, reduction and fracture stabilization. We created a 10 cm longitudinal skin incision over the anterolateral ankle gutter. The incision started 2 cm proximal to the syndesmosis, traversing the ankle joint, and curving medially over the lateral border of the talus. As expected, the superficial peroneal nerve and its terminal divisions were encountered and subsequently protected throughout the entirety of the case. Next, the deep fascia was incised utilizing dissection scissors. The extensor digitorum longus tendon was retracted laterally and a capsular incision was made into the ankle joint, exposing the displaced talar dome fracture fragment. The fragment was then excised and prepared for reinsertion (Figure 3).


Figure 2 CT scan showing dislocated talar dome fracture.

Fracture hematoma and any loose, overhanging soft tissues were excised. The ankle was then flushed with copious amounts of sterile saline. The fragment was reinserted into the ankle joint, and delicately placed in its anatomical position. Two 18 mm x 1.3 mm bioabsorbable poly-L-lactic acid Chondral Darts (Arthrex, Naples, FL) were then inserted in the anterior and posterior aspects of the fracture. With the limited access in the ankle joint, the pins were still placed in a diverging manner to provide greater capture and stability (Figure 4).

IMG_3256.png IMG_0088.png

Figure 3 Excised fragment measuring approximately 2.5 cm x 1.5 cm.


Figure 4 Fragment re-implanted and fixated with bioabsorbable pins.

Intraoperative imaging confirmed clinical findings that the fracture was reduced and the talar dome restored.

Preoperative radiographs were suspicious for a distal tibiofibular diastasis which could not be ruled out given the rotational mechanism of injury. We tested the stability of the syndesmosis intra-operatively utilizing the Cotton hook test [7].



Figure 5 Successful application of suture button and external fixator.

This was done by applying a laterally-directed force on the fibula with a towel clamp which resulted in lateral translation of the fibula with respect to the tibia. Therefore, we made an intraoperative decision to transfix the syndesmosis. First, a periarticular clamp was placed perpendicular to the axis of the ankle joint, reducing the syndesmosis which was confirmed on fluoroscopy. Next, the syndesmosis was stabilized using knotless, trans-syndesmotic Tightrope® fixation (Arthrex, Naples, Florida).


Figure 6 Radiograph 12 weeks postoperative.

Figure 7 Radiograph 16 weeks postoperative.

Final images were taken and the ankle was noted to be maintained in distraction, the syndesmosis reduced with the Suture Button system applied appropriately and the fragment restored to anatomic position (Figure 5). The incision was closed with vicryl sutures and stability was maintained through the external fixation.

He went on to heal uneventfully, without soft tissue complications, paresthesias or limitations in range of motion. The external fixator was removed after 6 weeks. Immediately thereafter, the patient began home physical therapy with ankle strengthening and range of motion exercises. By postoperative week 9, he started placing more pressure on his foot, partial-weight bearing in a pneumatic boot as he transitioned off crutches. By 12 weeks, he was completely off crutches and partial weight bearing in his boot.

Radiographs demonstrated progression of bone consolidation and maintained alignment (Figure 6). At 16 weeks he was back in his shoes and without pain or limitations. Radiographs appear normal but bony exostoses were beginning to form at the medial malleolus and medial talus.

There were no restrictions of motion upon physical exam (Figure 7). At the 18-month follow-up he stated he had been back to his regular daily activities, including basketball, with no reports of pain. Radiographs show excellent restoration of the talar dome and ankle mortise. Bony exostoses are noted but incidental and asymptomatic (Figure 8). According to the AOFAS Ankle-Hindfoot Scale (AHS) the patient scored 100 points and the patient is very pleased with his outcome, lack of pain and level of function.


Osteochondral lesions (OCLs) of the talus are rare in terms of overall fracture type in the lower extremity, however, they can be present in more ways than one might think. Lambers et al. retrospectively reviewed data of a prospective cohort of 59 patients and showed the prevalence of OCLs of the talus in ankle fractures with syndesmotic instability was 14% with most lesions located on the lateral talar dome [8]. This is consistent with the mechanism of injury and location of fracture of the case presented. Conversely, Raikin, et al., reviewed 428 ankle MRIs and found that the medial talar dome was most involved 62% of the time and, of those, the medial and mid zone was affected 53% [9]. Whereas these lesions are typically more superficial, the case presentation here focused on a dislocated, larger fracture segment of the lateral talar dome and this has not been explained much in our literature.

Figure 8 Radiographs one year postoperative.

Diagnosis of OCLs may be elusive during the early stages of patient complaints and can result in a delayed diagnosis [10]. In our case, the patient had a completely detached and 180-degree rotated large fracture so diagnosis was clear and straightforward. In addition to the standard preoperative radiographs, we ordered a CT scan to get a more accurate depiction of the lesion. CT scans can help identify the amount of bone involvement in an OCL and help in determining ideal fixation methods [10].

Multiple treatment options are available for OCLs of the talus and arthrodiastasis is among the preferred options. Arthrodiastasis has been shown to benefit patients significantly in the short- and long-term in prevention of post-traumatic ankle arthritis. However, ankle arthrodiastasis is considered a salvage procedure and most often a last-ditch effort prior to fusion or ankle implant arthroplasty [11-12]. Although the present case did not have a patient with ankle arthritis, we used this option to slow the progression of future osteoarthritis.

Joint distraction is not only used in the ankle, it is also used in the hip and knee with good long-term outcomes [13-14]. Furthermore, joint distraction is also used in other aspects of the foot and ankle. Dayton, et al., published a review describing a percutaneous technique for calcaneal fractures. They concluded that their patients’ return to function was similar or better than after open reduction, and their soft tissue complication rate was much lower [15]. In ankle joint distraction, it’s recommended to obtain at least 5 mm of distraction [11]. We achieved 2.7 mm of joint distraction which was measured from the calibrated from the postoperative radiographs via the PACS program.

Arthrodiastasis is based on the theory that osteoarthritic cartilage has healing capacity. The chondrocyte repair is nourished by intra-articular fluid pressure changes within the joint by movement with the use of hinges in the external fixator or by allowing the patient to walk with the frame in place. This allows intermittent increases in hydrostatic pressure, creating a supportive environment for cartilage repair [11]. In our case we used a static external fixator and made the patient non-weight bearing due to the fact that the patient had a displaced talus fracture that was reduced using open reduction internal fixation. The arthrodiastasis effect is difficult to evaluate individually. The authors believe the external fixation provided added benefit of maximal ankle immobilization as the bioabsorbable pins maintained position but did not affect much compression or maximum fracture stability.

In conclusion, our case report describes the use of open reduction and internal fixation of a large, completely dislocated lateral talar dome fracture fixated with bioabsorbable fixation and further stabilized with external fixation ankle arthrodiastasis. Valderrabano, et al., completed a study of 390 patients and found that talus fractures accounted for 2% of patients acquiring post traumatic ankle arthritis [17]. Lastly, Nakasa, et al., showed favorable outcomes utilizing bioabsorbable PLLA pins even in those patients who had disruption of the subchondral plate (18). We supplemented our fixation with a delta frame in order to provide the patient with greater stability and to allow for ankle joint distraction. We felt that this was appropriate for a patient of his age to slow the progression of ankle osteoarthritis. At 1.5 years postoperative assessment, our patient is without pain, functioning without limitation and pleased. This treatment approach may be beneficial in patients presenting with similar pathology. Further research investigating the risk of post traumatic ankle arthritis is needed to better understand long-term outcomes with this procedure.


  1. Zenegrink M, Struijs PA, Tol J, van Dijk C. Treatment of Osteochondral Lesions of the Talus: A Systematic Review. Knee Surg, Sports Traumat, Arthroscopy 8(2):238-246, 2010.
  2. Fortin, P. and Balazsy, J. Talus Fractures: Evaluation and Treatment. Journal American Acad of Ortho Surgeons 9(2):114-127, 2001.
  3. Higgins, T. and Baumgaertner, M. Diagnosis and Treatment of Fractures of the Talus: A Comprehensive Review of the Literature. Foot Ankle Int 20(9):595-605, 1999.
  4. Berndt, A. and Harty, M. Transchondral Fractures (Osteochondritis Dissecans) of the Talus. The J Bone Joint Surg Am 41(7):988-1020, 1959.
  5. D’Angelantonio AM, Schick FA. Ankle Distraction Arthroplasty Combined with Joint Resurfacing for Management of an Osteochondral Defect of the Talus and Concomitant Osteoarthritis: A Case Report. J Foot and Ankle Surg 52(1):76-79, 2013.
  6. Belczyk R, Stapleton JJ, Zgonis T, Polyzois VD. A Case Report of a Simultaneous Local Osteochondral Autografting and Ankle Arthrodiastasis for theTreatment of a Talar Dome Defect 26:335-342, 2009.
  7. Cotton FJ. Fractures and Joint Dislocations p 549. WB Saunders, Philadelphia, 1910.
  8. Lambers KA, Saarig A, Turner H, Stufkens SA. Prevalence of Osteochondral Lesions in Rotational Type Ankle Fractures With Syndesmotic Injury. Foot Ankle Int 40(2):159-166, 2019.
  9. Raikin SM, Elias I, Zoga AC, Morrison WB, Besser MP, Schweitzer ME. Osteochondral Lesions of the Talus: Localization and Morphologic Data from 424 Patients Using a Novel Anatomical Grid Scheme. Foot Ankle Int 28(2):154-61, 2007.
  10. Talusan PG, Milewski MD, Toy JO, Wall EJ. Osteochondritis Dissecans of the Talus: Diagnosis and Treatment in Athletes. Clin Sports Med 33:267-284, 2014.
  11. Kluesner AJ, Wukich DK. Ankle Arthrodiastasis. Clin Podiatr Med Surg 26:227-244, 2009.
  12. Labovitz JM. The Role of Arthrodiastasis in Salvaging Arthritic Ankles. Foot Ankle Spec 3(4):201-204, 2010.
  13. Hosny GA, El-Deeb K, Fadel M, Laklouk M. Arthrodiastasis of the Hip, J Pediatr Orthop 31(2):S229-234, 2011.
  14. Jansen MP, Besselink NJ, van Heerwaarden RJ, Custer RJ, Emans PJ, Spruijt S, Mastbergen SC, Lafeber FP. Knee Joint Distraction Compared with High Tibial Osteotomy and Total Knee Arthroplasty: Two-Year Clinical, Radiographic, and Biochemical Outcomes of Two Randomized Controlled Trials. Cartilage, 2019.
  15. Dayton P, Feilmeier M, Hensley NL. Technique for minimally invasive reduction of calcaneal fractures using small bilateral external fixation. J Foot Ankle Surg. 53(3):376–82, 2014.
  16. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of Ankle Osteoarthritis. Clin Orthop Relat Res 467(7): 1800-1806, 2009.
  17. van Valburg AA, van Roermund PM, Lammens J, van Melkebeek J, Verbout AJ, Lafeber EP, et al. Can Ilizarov joint distraction delay the need for an arthrodesis of the ankle? A preliminary report. J Bone Joint Surg Br. 77(5):720–5, 1995.
  18. Nakasa T, Ikuta Y, Tsuyuguchi Y, Ota Y, Kanemitsu M, Adachi N. Fixation Technique Using PLLA Pins Gives Good Clinical Results Regardless of Bone Condition in Osteochondral Lesion of Talar Dome. Foot & Ankle Orthopaedics. 2019 Oct 1;4(4):2473011419S0031.

officeArt object


Ankle arthrodiastasis in conjunction with treatment for acute ankle trauma

by Nunzio Misseri, DPM¹; Hayley Iosue, DPM¹; Elizabeth Sanders, DPM¹; Amber Morra, DPM¹; Mark Mendeszoon, DPM2,3

The Foot and Ankle Online Journal 13 (3): 3

Arthrodiastasis has been described as an alternative joint sparing procedure for more advanced stages of arthritis. The use of joint distraction has been gaining popularity in foot and ankle surgery, especially with regards to post-traumatic ankle arthritis. Less is known about the effects of arthrodiastasis in cases of acute ankle trauma. This case series presents four cases of intra-articular ankle trauma that were treated with arthrodiastasis using external fixation along with reduction with/without internal fixation. The external fixators were kept on for at least 6 weeks with follow-up of at least 1-2 years for each case. These cases represent high impact injuries that were destined for post-traumatic arthritis that would eventually result in a joint destructive procedure. The results were promising in all cases, by at least delaying the need for a joint fusion or replacement in one case and foregoing the need for such procedures in the other 3 cases within our follow-up period.

Keywords: Arthrodiastasis, ankle, diastasis, arthritis, trauma, post traumatic, external fixation

ISSN 1941-6806
doi: 10.3827/faoj.2020.1303.0003

1 – University Hospitals Regional Hospitals, Surgical Fellow
2 – University Hospitals Regional Hospitals, Fellowship Director; faculty
3 – Precision Orthopaedic Specialities Inc.

The incidence of people with post-traumatic arthritis accounts for nearly 12% of those with symptomatic lower extremity arthritis [1]. Among those with ankle joint osteoarthritis, previous trauma is the most common etiology ranging from 20% to 78% incidence [2-4]. These patients usually end up with joint destructive procedures such as joint fusion or replacement.

Arthrodiastasis is an innovative treatment for ankle arthritis to enhance ankle joint range of motion, diminish pain, and potentially delay or forego ankle joint destructive procedures. Arthrodiastasis of the ankle has been described as an alternative and/or adjunctive salvage procedure for arthritis in patients not amenable to ankle joint replacement or arthrodesis [5]. The procedure is not technically demanding for the surgeon and, long-term, can cost less than arthrodesis or arthroplasty.

Various theories exist to explain how arthrodiastasis has a positive effect on joints. A theory by Gavril Ilizarov suggests applying tension to tissues with distraction increases micro-vascularity to articular cartilage, therefore assisting in cartilage repair [6]. This tension creates a hypervascular state which increases synthesis of nutrients, proteoglycans and in turn helps stimulate chondrocyte formation [6].

Lafeber described a theory in which joint unloading with resulting fluctuations in intra-articular pressure from joint distraction along with concomitant weight bearing, the activity of chondrocytes increases which creates proteoglycans that have the ability to repair articular cartilage and stimulate pluripotent mesenchymal cells to differentiate into articular cartilage [7,8]. This concept of mechanical offloading with continuing pressure changes was shown to increase proteoglycan synthesis by 50% in osteoarthritis knee condyles undergoing arthrodiastasis [7,9]. This process also decreases the inhibition of proteoglycan synthesis by mononuclear inflammatory cells, decreases production of catabolic cytokines and provides increased nutrition delivery to chondrocytes [7].

Both theories predicate the notion that osteoarthritic ankle cartilage is capable of regeneration. Arthrodiastasis has been used over the years with chronic osteoarthritis of the ankle with good results. A review by Dr. Rodriguez-Merchan published in 2017 looked at 14 articles that included patients with end stage osteoarthritis undergoing ankle joint distraction. A total of 249 patients were included in this review with follow up ranging from 1-12 years. Overall 73-91% of patients had good results within their follow up and 6.2-44% of patients ended up with either a joint fusion or replacement [10]. This review serves as a good foundation on the results of ankle joint arthrodiastasis in chronic cases of osteoarthritis, however little is known on its effects during its application in acute trauma. We present a series of acute ankle trauma in which we employ external fixation for arthrodiastasis. In these cases studies, each patient suffered from an intra articular ankle fracture. In the acute setting, the fractures were reduced and an external fixator was applied. Ankle joint diastasis of 5-10mm was applied to the ankle joint utilizing the external fixator. The external fixators were left in place for six to eight weeks.

Case 1

A 30 year-old male sustained an open bimalleolar fracture while operating his horse-drawn lawn mower. Upon presentation to the emergency department, he was evaluated and subsequently taken to the operating room for wound washout, flap closure, application of a delta frame for stability with percutaneous kirschner wire fixation to the medial malleolus. Once the soft tissue envelope was stable nine days later, open reduction and internal fixation was performed. The same delta frame remained intact and the ankle joint was distracted in an attempt to preclude ankle arthritic changes. The frame remained in place for six weeks allowing for ankle joint arthrodiastasis during this time. The patient was seen in the office 1.5 years after surgery and was clinically doing well. He is ambulating without orthoses and able to perform his daily activities without issues. Radiographic images revealed a healed fracture with the ankle mortise in good alignment, without signs of degenerative arthritis.


Figure 1 Open bimalleolar fracture of a 21-year-old Amish male sustained while operating a horse-drawn lawn mower. Case 1.


Figure 2 Post-operative radiographs status-post wound washout and closure, open bimalleolar fracture reduction, percutaneous fixation, application of delta frame. Status-post bimalleolar fracture open reduction and internal fixation, syndesmotic repair, and re-application of delta frame to obtain arthrodiastasis at the ankle joint.


Figure 3 Six weeks status-post bimalleolar fracture open reduction and internal fixation, postoperative day 0 of delta frame removal.

Case 2

A 56-year-old female presented after a motor vehicle accident where she sustained a right closed comminuted talar fracture. Radiographs and a CT scan revealed a Hawkins type IV talus fracture. She was subsequently taken to the operating room after full evaluation in the emergency department. Closed reduction was attempted with a calcaneal pin but was not possible. Therefore, a lateral sinus tarsi approach incision was made from the tip of the fibula extending dorsally over the 4th metatarsal to expose the talus. The talus was reduced and fixed percutaneously with Kirschner wires and a delta frame was applied.

Eleven days later, after the soft tissue envelope improved, she was taken back to the operating room for subtalar and talonavicular joint arthrodesis in an attempt to maintain blood supply to the talus. The deltoid ligament was repaired and a modified Brostrom augmentation was performed. A ring external fixator was placed to achieve stability as well as arthrodiastasis at the ankle joint. The external fixator was removed two months postoperatively. Minor medial ankle arthritis was noted on postoperative radiographic images which worsened over the years. Two years postoperatively the patient is contemplating joint destructive procedures.


Figure 4 Radiographs and CAT scan of a Hawkins type IV severely comminuted talus fracture. Case 2.


Figure 5 Intraoperative findings of a severely comminuted talus fracture. Postoperative clinical photos and radiographs of open reduction and external fixation of a comminuted talus fracture, stabilization with percutaneous Kirschner wires and circular external fixator.

Case 3

A 34-year-old male patient was admitted from an outside hospital two days after a trauma where a car he was repairing fell on his left lower limb. He was noted to have a closed dislocated fracture of the left talus, Hawkins type III, and displaced medial malleolus fracture. Closed reduction and splinting was performed at the previous hospital. After full evaluation at our facility, open reduction of the talus and closed reduction of the medial malleolus was performed followed by the application of a ring external fixator. After adequate reduction, approximately a half centimeter of distraction of the ankle joint was produced. This frame was left in place for four months. Following frame removal, the patient continued physical and functional treatment aimed at strengthening the tibial and foot muscles and was encouraged to increase range of motion of the ankle. The patient was able to return to his normal daily activities and return to work. At his two year follow-up he has not needed to go on to further joint destructive procedures and continues to be able to perform his activities of daily living without issue.


Figure 6 Radiographs on admission. Case 3.


Figure 7 Radiographs following Ilizarov frame application and during treatment.


Figure 8 Radiographs following Ilizarov frame removal 80 days status-post reduction and external fixation of talus fracture.

Case 4

A 15-year-old male patient who presented with chief complaint of right foot and ankle injury sustained after a fall while riding a BMX bike. The patient did have a history of a previous talus fracture 3 years prior to this presentation which was treated non-surgically. Radiographic images revealed a Hawkins type III talar neck fracture which was confirmed and evaluated on CT scan. The patient underwent open reduction with internal fixation of the talus fracture with two cannulated screws from posterior to anterior and application of an external fixation with approximately 6-mm of joint distraction.

The external fixator was removed after 6 weeks and the patient was gradually transitioned from a walking boot and into well-supportive sneakers while undergoing physical therapy. He was able to return to his daily activities, sports and BMX bike. The patient was seen in the office 1.5 years after surgery without any clinical or radiographic signs of post traumatic arthritis.


Figure 9 Preoperative radiographs and CT scan images; post operative radiographs pre and post removal of external fixation.


Acute ankle arthrodiastasis with concomitant ankle fracture, open reduction with internal and/or external fixation, should be considered in an attempt to preclude post-traumatic ankle arthritis. This becomes more crucial in cases of intra-articular ankle trauma, where the rate of post-traumatic arthritis increases. With arthrodiastasis, the changes in hydrostatic pressure provide an environment for chondrocyte repair and regeneration thus decreasing the chances for post-traumatic arthritis and the potential need for a joint fusion or replacement. The combination of mechanical offloading along with the microangiogenesis that is produced with increased tension to the soft tissue structures have shown to aid this process of repair.

Vito, et al., distracted 65 arthritic ankles using the Ilizarov frame for 6 weeks with distraction of 5-10 mm [11]. The patients had marked reduction in pain at 12 months for all patients except two: those two went on to arthrodesis. Valburg, et al., reported an average of two years pain relief following three months of arthrodiastasis with an Ilizarov frame [12]. Ploegmakers, et al., assessed the use of arthrodiastasis in 22 patients and reported 73% of the patients had significant improvement at seven years [13]. Although these series were not in the acute setting, one can assess the benefit these series showed with arthrodiastasis of the ankle joint.

This case series showcased four different cases of intra-articular ankle trauma where ankle diastasis was employed as part of the fixation in the acute setting. Successful outcomes were noted in three patients thus far at one to two years of follow up. One of the patients will require a joint fusion or replacement after 2 years. With the widening list of indications for arthrodiastasis, we believe there are benefits of using joint distraction in acute intra-articular trauma to either forgo or delay post-traumatic arthritis. This review serves as a foundation to pursue further indications for arthrodiastasis, however it does have limitations. The sample size is small at this time due to lack of extended follow-up. The follow-up time period listed for these four cases is 1-2 years. The results may prove to be different in the future with extended follow-up, however ankle joint diastasis remains a viable option in patients with intra-articular trauma to possibly reduce or delay the need for arthrodesis in the future


  1. Thomas AC, Hubbard-Turner J, Wikstrum EA, Palmieri-Smith RM. Epidemiology of Posttraumatic Arthritis. Journal of Athletic Training. 2017;52(6):491-496.
  2. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20(10):739–744.
  3. Saltzman CL, Salamon ML, Blanchard GM, et al. Epidemiology of ankle arthritis: report of a consecutive series of 639 patients from a tertiary orthopaedic center. Iowa Orthop J. 2005;25:44-46.13.
  4. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009; 467(7):1800-1806.
  5. Labovitz, J. The Role of Arthrodiastasis in Salvaging Arthritic Ankle. Foot & Ankle Specialist. 2010; 3(4):201-204.
  6. Ilizarov GA. Transosseous Osteosynthesis. Theoretical and Clinical Aspects of the Regeneration and Growth of Tissue, Chapter 11, Non-operative Correction of Foot Deformities. 547-581. Springer-Verlag, Heidelberg, 1992.
  7. Lafeber FP, Intema F, van Roermund PM, et al. Unloading joints to treat osteoarthritis, including joint distraction. Curr Opin Rheum. 2006. 18:519 – 525.
  8. Vito G, et al. Point-Counterpoint: Is Arthrodiastasis A Viable Option For Ankle Arthrosis. Podiatry Today. 2008;21(10).
  9. Kluesner AJ, Wukich DK. Ankle Arthrodiastasis. Clin Podiatr Med Surg. 2009 Apr;26(2):227-44.
  10. Rodriguez-Merchan EC. Joint Distraction in Advanced Osteoarthritis of the Ankle. Arch Bone Jt Surg. 2017;5(4):208-212.
  11. Vito G, Pacheco F, Southerland C, Rodriguez E, Thompson S. A New Solution for the Arthritic Ankle. Podiatry Today. 2005. 18(12):36-43.
  12. Van Valburg AA, van Roermund PM, Marijnissen AC, van Melkebeek J, Lammens J, Verbout AJ, Lafeber FP, Bijlsma JW. Joint distraction in treatment of osteoarthritis: a two-year follow-up of the ankle. Osteoarthritis Cartilage. 1999 Sep;7(5):474-9.
  13. Ploegmakers JJ, et al. Prolonged clinical benefit from joint distraction in the treatment of ankle osteoarthritis. Osteoarthritis Cartilage. 2005;13(7):582-588