Tag Archives: diabetic foot

Limb salvage in Charcot deformity correction: A case series of 20 limbs

by Jordan James Ernst, DPM, MS, FACPM1*; Dalton Ryba, DPM2; Alan Garrett, DPM, FACFAS3

The Foot and Ankle Online Journal 13 (4): 4

Charcot arthropathy is a disabling complication of peripheral neuropathy, with progressive osseous destruction often necessitating operative intervention to prevent ulceration and even amputation. The prospect of a stable, plantigrade foot is one that is best sought through timely intervention. While a host of procedures and techniques for Charcot reconstruction have been described in the literature, no clear consensus has been reached on a superior method or modality, nor on what factors most significantly affect outcomes and complications. We present a case series of 18 patients (20 limbs) operatively treated at our institution and followed for an average of 3 years for Charcot deformity. Reconstructive efforts consisted of both internal and internal fixation, and combinations thereof. To date, 1 patient has received a below-knee amputation. At 3 years (range 12-50 months), 80% of our limbs have shown that our interventions have provided lasting correction and defense against future ulceration and other undue sequelae. Three limbs remain affected by ulceration. In total, 95% of limbs have avoided major amputation. Our results appear comparable with the available literature. While successful results are being achieved in this endeavor, many questions remain unanswered, awaiting higher levels of empirical evidence to aid in their resolution.

Keywords: diabetic foot, arthrodesis, reconstruction, external fixation, beaming, tibiotalocalcaneal fusion, arthropathy

ISSN 1941-6806
doi: 10.3827/faoj.2020.1304.0004

1 – Fellowship-Trained Foot and Ankle Surgeon, Texas Institute of Orthopedic Surgery and Sports Medicine, Grapevine, TX
2 – Foot and Ankle Surgeon, Lone Star Orthopaedic and Spine Specialists
3 – John Peter Smith Hospital, Foot and Ankle Surgery, Dept. of Orthopedics, Acclaim Bone and Joint Institute
* – Corresponding author: jordanj.ernst88@gmail.com


Charcot arthropathy, a potentially disabling complication of peripheral neuropathy, often demands surgical intervention due to the progressive nature of osseous destruction, which, when left unabated, may lead to deformity susceptible to ulceration, infection, and ultimately, amputation. Surgical intervention is often necessary to create a stable, plantigrade foot that is less prone to ulceration. While a host of procedures and techniques for Charcot reconstruction have been described in the literature, no clear consensus has been reached on a superior method or modality, nor has a deformity-specific correction algorithm been established.

In addition to procedural selection, operative timing with respect to stage of deformity has not been clearly defined. Despite this, failed conservative management, recalcitrant ulceration, continued pain secondary to residual bony deformity, and as a final effort to avoid amputation remain the primary surgical indications [1].

The insensate foot is one that is prone to recurrent, unperceived trauma. Continued ambulation, coupled with neuropathic joint relaxation and hypotonia, allows for progressive osseous destruction that compromises the pedal architecture. Loss of vasomotor tone, as a result of autonomic neuropathy, allows shunting within the Haversian system, increasing bone perfusion with subsequent demineralization and, eventually, osteopenia. The resultant abnormal bone is ill equipped to protect the vulnerable joints from the aforementioned neuropathic destruction and deformity. As each case of Charcot deformity is unique, largely due to patient physiology and pattern of destruction, direct comparison of fixation techniques and patient cohorts may not be feasible. Despite this lack of standardization, sound understanding of the principles of each surgical technique remains the mainstay of enabling a surgeon to devise a construct that will have the most effectual outcome.

The aim of our study was to review, at midterm follow up, the outcomes of 20 limbs post Charcot deformity correction. We deemed a successful outcome as a stable, ulceration free limb allowing for ambulation. A limb with remaining wound or ulceration, or one that underwent major amputation, was regarded as an unsuccessful outcome.

Case Series

From February 2010 to July 2017, 26 limbs in 24 patients were treated consecutively at our institution for Charcot deformity of the midfoot, rearfoot, and ankle, or combinations thereof, with at least 12 months of follow up available. Our institutional review board approved this retrospective case series. Of these patients, we excluded one patient who was treated at an outside institution between treatments at our institution, one patient who died due to unrelated causes, and 4 others who were lost to follow up as they had not been seen at our institution in over 1.5 years. Inclusion for operative reconstruction included recurrent ulceration despite conservative measures. We prefer to avoid surgical intervention in those with a closed soft tissue envelope though deformities that were deemed unbraceable and neuropathic fractures/dislocations that were complicated by Charcot destruction were also included. We did not elect to perform a reconstruction for any patient who would have clearly been better served with a proximal amputation. In deciding between conservative and surgical intervention, we carefully weighed the risks and benefits of each potential treatment including the location and magnitude of deformity, patient willingness and ability to comply with post-operative instructions, comorbid conditions, glycemic control, vascular status, family support, social issues, wound presence with or without concurrent infection, and others. Notably, reliance on casting/bracing to contain the deformity, skin breakdown, deep vein thrombosis, and contralateral Charcot development are of special concern in patients undergoing conservative approaches. In total, 20 limbs in 18 patients met our study criteria.

In some patients, after successful Charcot reconstruction at a given anatomic location, the patient later incurred a Charcot event at a separate site within the same extremity. In these instances, for calculating wound duration preoperatively and time in external fixation, the total time for all patients combined was divided by the total number of “Charcot events” (and thus reconstructions) rather than number of limbs. This was performed to avoid artificially higher average time intervals that would have been produced by attributing the pre-operative wound time and external fixation time for multiple surgeries to one limb. In total, 24 reconstructions were performed as 4 of the 20 limbs underwent surgical correction of a repeat Charcot event.

A complete review of the medical charts including radiographs were performed to gather the data for our study. In addition to demographic information, the following variables and parameters were recorded: the location(s) of the deformity, primary and adjunctive procedures performed, date of index and subsequent surgeries, presence of wound(s) and osteomyelitis, time to wound healing, wound duration prior to surgery, percentage of patients obtaining a Charcot Restraint Orthotic (CRO) walker post operatively, complications, comorbid conditions, tobacco use, Hg A1C%, prior pedal amputations, date of last follow up, and total follow up time.

Of the 20 limbs, 6 had Charcot deformity of the ankle (Brodsky 3A), 5 had deformity in the rearfoot/Chopart’s joint (Brodsky 2), 17 demonstrated abnormality at the midfoot/Lisfranc joint (Brodsky 1), and 1 patient developed a Charcot process to the calcaneal tuber (Brodsky 3B). Additionally, 5 of these patients presented with combined Brodsky 1 and 2 deformities.

Our patients, on average, were afflicted by 4.3 comorbid conditions. Diabetes was responsible for the neuropathic process in 14 patients, idiopathic causes in 2, spinal stenosis in 1, and Lupus in 1. Eight patients had a history of cardiac disease, 1 of CVA, 3 of COPD, 2 of chronic kidney disease (1 ESRD), 2 of psychiatric disorders, and 3 of hepatitis. Peripheral vascular disease affected 1 patient. Ten patients had a history of tobacco use. The average A1C value in those with diabetes preoperatively was 9.3%.

The average patient age was 55.7 years, there were 9 females and 9 males. Average BMI measured 34.6kg/m2.

Operative Procedures

All procedures were performed by the senior author. Two reconstructions were performed during the acute phase of the disease (Eichenholz I), and the remainder were performed during the inert phase (Eichenholz stage II/III), all after distal perfusion had been deemed appropriate.

The index procedures were performed at the location of existing deformity, with subsequent surgery (subsequent Charcot event) performed at the new location of deformity.

Seven patients underwent columnar beaming (example in Figure 4), one medial column plating and screw fixation, one medial double screw fusion, and one medial column screw fusion. All but one of these constructs was augmented with application of a static circular frame. Three underwent plantar midfoot planing with placement of external fixation alone.

One patient underwent bilateral beaming in a staged fashion. The other patient who underwent bilateral procedures was treated for a calcaneal avulsion fracture on the right side with fragment excision, achilles tendon reattachment via anchors, and flexor hallucis longus transfer. Contralaterally, he developed midfoot, and then, ankle deformity, treated sequentially with external fixation and planning and TTC fusion respectively.

Regarding the 5 tibiotalocalcaneal (TTC) fusions, 3 underwent intramedullary nailing. In one such case, nailing initially proved effective but was compromised by late infection. Limb salvage was achieved with the use of a titanium cage after temporization with an antibiotic nail (Figure 1). The other 2 patients underwent lateral TTC plate and screw fixation (Figure 3) constructs respectively, as prior hardware precluded intramedullary nailing. In 4/5 TTC fusions, a static circular frame was applied over the respective fusion construct. Two intramedullary nails were placed after arthroscopic ankle preparation. In these cases, there was not yet flagrant malalignment necessitating an open approach. With open approaches, we formally prepare the subtalar joint with our constructs. The necessity for this has been debated [2].

Two patients underwent medial Lisfranc fusion with external fixation utilizing olive wires and no additional hardware. These were performed for severe dislocations in the acute phase that threatened soft tissue integrity. No limbs underwent concomitant TTC fusion and midfoot bolting as we did not treat a patient with simultaneous deformity. However, 4 patients that received midfoot reconstruction subsequently underwent treatment for deformity at the ankle. An additional patient, who was treated for midfoot disease and then later developed ankle pathology, underwent a below-knee amputation (BKA) for concomitant ankle abscess and systemic sepsis (Figure 2).

The remaining patient underwent ankle fusion by way of external fixation alone given the attendant joint sepsis.

Cases of soft tissue infection were treated with thorough irrigation and debridement with appropriate antibiotic therapy. Osteomyelitis was treated with bone resection as necessary with infectious disease consultation to manage prolonged antibiotic therapy.

Results

Eighteen patients for a total of 20 limbs (2 patients with bilateral reconstructions) were operatively treated at our institution and followed for an average of 3 years for Charcot deformity. Given the 20% rate of a repeat Charcot reconstruction, 24 reconstructions were performed in total (4 repeat Charcot reconstructions for patients who developed ankle disease after midfoot surgery). To date, 1 patient has received a BKA. Overall, 80% of our limbs have obtained a successful outcome. Three limbs remain affected by ulceration, 2 of which had wounds preoperatively. In total 95% of limbs have been salvaged or remain salvageable.

With respect to primary midfoot/hindfoot reconstruction, there were 17 such cases. As mentioned, 5 developed subsequent disease of the ankle, with 3 out of 4 attempted ankle reconstructions obtaining salvage, and in the remaining patient salvage not attempted due to emergent infection (BKA). Of the remaining 12 primary midfoot/hindfoot reconstructions, 10 limbs were salvaged. One patient in this group underwent bilateral midfoot reconstructions in a staged fashion.

Figure 1 This patient incurred separate Charcot events at both the midfoot and then the ankle, approximately 3.5 years apart. Panels a, b show his presentation after his ankle Charcot event. He had been treated by our team with external fixation and planing after a failed midfoot fusion several years prior at another facility. His midfoot hardware was removed and the ankle addressed with TTC nail fusion (c,d), the tract of which can still be appreciated within the tibial medullary canal (k,l). The nail was removed due to a chronic non-union with superimposed late infection (e,f), and a titanium cage was placed (i,j) after temporary fixation with an antibiotic nail (g,h). At last follow-up, a pseudoarthrosis is appreciated about the titanium cage (k,l). Clinical view of patient (m,n,o): A stable, plantigrade foot is demonstrable, despite the pseudoarthrosis, which has been maintained with his CRO Walker. We see him periodically in the clinic for surveillance exams.

Figure 2 This patient underwent Charcot reconstruction of his midfoot during the acute phase of the destructive process, clinical photo in panel a. Deformity appeared isolated to the LisFranc complex but was grossly unstable as evidenced by the divergent pattern of dislocation seen on his ED radiographs (b,c). Given the tenuous soft tissue, we elected to utilize an external fixation only construct to reposition the gross malalignment of the midfoot via olive wires (d,e). The patient coalesced successfully in an acceptable position (f,g). He ambulated ulceration free for 4 months before presenting to the ED with an ankle abscess and in a septic state. No open wounds were present but soft tissue emphysema was seen on x-ray over an area of the medial ankle where an obvious abscess was present (h). An emergent bedside incision and drainage was performed in the ED (i) before he was taken to the operative theater for a guillotine BKA. It appears that when he presented in sepsis he was undergoing a Charcot process about the ankle (h). The relationship of the Charcot event to the abscess is unclear, although we have encountered Charcot flares complicated by abscess without open wounds previously. This example highlights that with Charcot correction, success is never absolute.

Figure 3 This patient was initially treated for a Charcot deformity with plantar planing and external fixation application for a midfoot prominence and resultant ulceration (a). After successfully healing his ulceration and removal of the external fixator, he presented back to the clinic a few months later with a gross varus deformity at the ankle, and lateral malleolar wound, after a period of admitted unprotected ambulation. Radiographs revealed a pathologic bimalleolar fracture and severe varus deformity of the ankle (b,c). As a broken half pin from his prior external fixator obstructed the tibial canal, he underwent TTC fusion via large diameter cannulated screws. The wound was excised through a lateral approach that entailed fibular takedown, subtalar and ankle joint preparation, and corrective cuts to the tibia and talus to realign the rearfoot and ankle to the leg. An external fixator was placed to extend the area of stability beyond the fusion sites (d,e). Radiographs at final follow-up reveal good osseous union to the ankle and subtalar joints with maintained deformity correction (f,g).

Figure 4 Example of medial column bolting. A midfoot Charcot process in the quiescent phase as demonstrated by the partial coalescence and lack of bony fragmentation (a,b). Note the plantar subluxation of the midfoot on the rearfoot, most demonstrable at the talonavicular joint (b). Significant osseous resorption is seen at the intermediate cuneiform which is displaced medially along with the medial column (a). Medial column bolting was utilized to restore stability and correct deformity. This was enhanced with the application of a static external fixator to extend fixation beyond the joint segments affected by the neuropathic process (c,d). Radiographs at final follow up reveal maintained correction (e,f). The joints were not formally prepared in this instance, though it has become our preferred technique to do so.

As stated, the 4 repeat Charcot reconstructions were patients who developed disease of the ankle after undergoing midfoot reconstruction. Three of these limbs were ultimately salvaged, with 1 afflicted with persisting ulceration. In total, of the 7 patients with ankle deformity, 5 were salvaged. These include the 3 that were successfully reconstructed subsequent to midfoot reconstruction and 2 primary ankle salvages. The 2 remaining patients were the patient relegated to BKA and the patient with failed ankle salvage after prior midfoot surgery.

In 1 patient, calcaneal avulsion repair with FHL transfer was performed successfully on one side with primary ankle salvage performed on the contralateral side at a later date (1 of 2 patients with primary ankle salvage).

In total, there were 20 primary limb reconstructions, 17 of the midfoot/hindfoot, 2 of the ankle, and 1 of the calcaneal tuber.

The average A1C value in those with diabetes preoperatively was 9.3%. The average A1C in those still with unsuccessful outcomes was 8.3%, while in those with successful outcomes averaged 9.7%. Four patients had a history of amputation within the forefoot. Total time in the external fixation device averaged 2.8 months. Twelve limbs (60%) had ulcerations preoperatively, 3 wounds were complicated by underlying osteomyelitis. At the time of frame removal, 10 of the wounds had healed. The other 2 patients with preoperative wounds have maintained their limbs but are still with wounds, 1 with prior osteomyelitis. Average wound time prior to surgery was 11.2 months. Pin tract infections occurred in 6 frames, wires broke in 2, one of which with concomitant infection that prompted premature frame removal. Other complications included 1 abscess formation, 1 case of non-pin tract cellulitis, 1 incision dehiscence, and 1 decubitus ulceration. Descriptive characteristics of the study population can be seen in Table 1.

Ulcer Free Limbs:

16 Limbs

15 Patients

Limbs with Ulceration/BKA:

4 Limbs

4 Patients

Total study population:

20 Limbs

18 Patients

Gender 6 M, 8 F 3 M, 1 F 9 M, 9 F
Age (years) 56.8 51.5 55.7
Follow – Up (months) 37.2 32.3 36.4
Laterality 9 R, 5 L 3 R, 1 L 12 R, 8 L
BMI (kg/m2) 35.2 32.3 34.6
Diabetes-related neuropathy (limbs) 12 3 15
A1C 9.7% 8.3% 9.3%
PVD 0 1 1
Comorbid Conditions (Avg #) 4.1 5 4.3
Tobacco Use 60% 50% 55.6%
Cardiac disease 6 3 8
ESRD 0 1 1
Number of pre-operative wounds and duration 10 Limbs

10.6 months

2 Limbs

14 months

12 Limbs

11.2 months

Osteomyelitis (limbs) 2 1 3
Time In External Fixation per Events (months) 2.8 2.9 2.8
Repeat Charcot Events

(Limbs)

3 2 5
Prior Forefoot Amputations (limbs) 2

1 ipsilateral

2

2 ipsilateral

4

3 ipsilateral

Location of Deformity
Ankle/Hindfoot 5 2 7
Midfoot/Hindfoot 13 4 17
Procedures Performed
TTC/TC/Ankle Fusion 5 1 6
Midfoot and Combined Midfoot/Rearfoot Fusions 7 3 10
Midfoot Fracture-Dislocation Correction with External Fixation Alone 1 1 2
Planing with ex-fix alone 5 0 5
Calcaneal Avulsion Repair 1 0 1

Table 1 Descriptive summary of patient population averages. *Note the number of patients with a salvaged limb and those with an unsalvaged limb do not equal the total number of patients as one patient had successful reconstruction on one side and failure of the contralateral extremity (both midfoot reconstructions).

Discussion

Limb salvage rates in patients undergoing Charcot reconstruction are reported with great variability in the literature. With any of these data points, it is important to consider that each surgeon has an individualized selection bias to their respective patient population. While certain indications for Charcot correction have been developed, each cohort is ultimately that surgeon’s unique population deemed appropriate for surgical intervention. As such, there is likely heterogeneity when comparing patient populations undergoing Charcot reconstruction. As previously mentioned, the choice to attempt reconstruction in a patient with Charcot deformity is multifaceted, and often difficult. Zgonis has described the choice between conservative measures and surgical intervention in Charcot patients as the “lesser of two evils” given the significant complications in each [3]. In addition to deciding between reconstruction and non-operative care, amputation is an alternative in many patients. Clearly, limb salvage should not be undertaken in those whose medical status or limited functional capacity would preclude them from ever realizing the benefits of limb salvage. In these patients, this choice can become complex however, as in some patients, the magnitude of the contribution of comorbid conditions versus the limb deformity itself, to lack of function, cannot be easily discerned. No patient in our series requested a below knee amputation, although all patients with Charcot joint disease are made aware from initial diagnosis that the limb is at risk for this outcome. As no patient with emergent infection underwent reconstruction, the procedures could be seen as elective.

Domek, et al., demonstrated that among diabetic patients undergoing elective surgery, the average A1C value of those with postoperative complications was 6.29%, compared with 6.11% for those who did not. Each 1% increase portended a 5% increase in complication risk [4]. Though A1C based risk stratification for diabetic patients undergoing elective procedures has been clearly illustrated, these guidelines are not necessarily best interpreted as concrete “cut off” points when deciding to offer a patient Charcot reconstruction, but rather as a valuable prognostic tool to be considered in the entirety of the clinical situation. Furthermore, bracing in the face of severe deformities is impractical. Ramanujam, et al., have shown that in a cohort of 116 patients with Charcot of the foot and/or ankle treated with external fixation, A1C was not associated with risk of amputation or mortality [5]. A1C Averaged 8.16% in their series, somewhat lower than our average. While not an ideal average, the surgeon must contemplate which scenario offers the best propensity for healing; a wound with an underlying structural abnormality in a patient with an A1C of 9%, or a wound without underlying prominence in that same patient. Those in our study with successful outcomes trended towards higher A1C values. Keeping this in mind, there are undoubtedly patients whose comorbid conditions lack a level of control so great that surgical reconstruction is doomed to failure. The diabetic host with ESRD is one such patient that is often cited as being ill-equipped to convalesce successfully after Charcot reconstruction, given the devastating effects of renal disease on bone metabolism [6] and the sheer mortality associated with the disease [7].

With respect to prior amputations, our results showed that half of those with an unsuccessful outcome had a history of prior forefoot amputation. A greater sample size could ascertain whether prior forefoot amputation is truly an independent risk factor for amputation, or rather a reflection of more severe disease processes in these patients.

Increased morbidity has been reported in Charcot reconstructions in the face of ulceration [5], and internal fixation is often avoided in these cases [8].

Regarding wound presence in our cohort, 10/12 (83.3%) patients with preoperative wounds obtained successful outcomes compared to the overall success rate of 80%. Of the 3 patients who remained with ulceration or wound at the end of our study period, 2 had wounds preoperatively.

In considering the success of our interventions, 80% of these patients ultimately achieved the goals of reconstruction, a plantigrade and functional extremity without a predilection for re-ulceration. In measuring the merit of our interventions however, we must also examine the effect of our interventions on those in whom reconstruction has not attained the desired outcome. One patient underwent major amputation as a result of infection not directly related to our intervention. In assessing the 3 patients in whom wound healing has not been achieved, 2 had wounds pre-operatively. The one postoperative wound developed from non-compliance from the patient wedging her external fixator around her wheelchair footrests to create a decubitus heel ulceration. No wounds were complicated with infection at last follow up. We feel that while 100% success has not been obtained, we have stayed true to the bioethic of non-maleficence or “Primum non nocere”. All 3 of these limbs remain salvageable, and a non-healing wound was never created by our surgical approach.

While the risk of contralateral Charcot after an initial event is well documented in the literature [3], less information has been assembled on the risk of a Charcot event within the same limb at a secondary location. In our series, 5 patients (25% of limbs) developed ankle Charcot deformity after having undergone treatment for breakdown at the midfoot level, comprising 5/17 of all patients treated for midfoot disease. One had been treated with bolting of the midfoot, 3 with external fixation alone, and 1 with plating. Of these 5 patients, 4 admitted to a period of non-compliance with their CRO walker, and 1 had declined CRO walker fitting and instead ambulated in a custom-made gauntlet AFO. On average, the Charcot events were separated by 2.3 years. Given our sample size, we cannot speculate on the potential risk for a repeat Charcot event within the same limb. Clearly, it would stand to reason that if one segment of the pedal framework is fused, the adjacent segments are placed under increased demand, and thus at increased risk for overload and collapse. To what extent this is true and the relationship between various anatomical zones remains to be seen [9]. Increased understanding of ipsilateral Charcot events could potentially affect future fixation methods. To our knowledge, the percentage of this occurrence has not been documented. Our rate of 25%, while seemingly high, does not have a reference standard for us to compare our outcomes. Perhaps our results are an aberration, or non-compliance was the culprit, or perhaps our follow up of 3 years was simply long enough to realize a potentially underreported sequela. The rate of contralateral Charcot has been reported to be approximately 25%, [10] matching our value for ipsilateral deformity. In our population, 2 patients were surgically treated for contralateral deformity, however more potentially had contralateral Charcot deformities that were treated conservatively, so we did not attempt to compare rates of contralateral versus ipsilateral Charcot in our own series. One of our patients with bilateral deformity at the midfoot level was treated successfully on one side, but remains with an ulceration on the contralateral extremity.

While we routinely obtained radiographs after Charcot reconstruction, we did not include rates of union in our series. LaFontaine has described the abnormal character and cellularity of this bone [11]. This type of bone not only demands more robust fixation, but also has suboptimal reparative capacity. At times, unconventional fixation is required, as in our TC fusion with a titanium cage. This method is touted to facilitate osseous formation through structural mechanics rather than through copious biologics. Via load transfer and its open architecture allowing for graft incorporation, the device is said to actively participate in the healing process [12]. In the absence of radiographic evidence of hardware failure or frank peri-implant fracture, we deem clinical union to be of greater importance in determining weight bearing progression in Charcot patients. Wiewiorsky, et al., elaborated that complete osseous union is not a definite prerequisite for stability [9]. All wound-free patients in our series were instructed to advance to weight bearing in a CRO walker once clinically stable. All but 3 of our wound free patients obtained a CRO walker device. At our institution, we routinely have patients fitted for a CRO walker in the post anesthesia unit after frame removal. Coordination of this effort preoperatively with the prosthetist is key to minimizing the patient’s time to obtaining the device, and therefore their risk of collapse. While waiting for their custom device to be manufactured, a fracture boot is utilized for weight bearing in a controlled environment such as the home or a rehabilitation facility.

With regard to fixation options, progress has been made to discern the general trends and outcomes with various fixation methods, but also to develop and refine techniques for improved success.

Dayton, et al., in their systematic review comparing internal and external fixation for Charcot deformity, presented general concepts of fixation methods [8]. They elaborate that internal fixation has a greater degree of comfortability, being a technique surgeons are most often more familiar with and perceive as being more straightforward. External fixation, while potentially more technically demanding, offers a less invasive approach that ultimately yields a platform for soft tissue preservation while allowing an adjustable design with a wide range of stability.

Their results elucidated several trends in fixation choice. They noted internal fixation tended to be the method of choice when ulceration or osteomyelitis were absent. In contrast, external fixation was most often employed when osteomyelitis or wounds were present. This method was also often staged to afford limb salvage and allowed for earlier weight bearing. Overall, the odds of success with internal fixation was 0.52 times as likely as with external fixation, despite the higher usage of external fixation in more complicated cases.

While internal and external fixation each have merits of their own [1,5] combining the two methods may provide a more favorable outcome [13,14]. Hagewald, et al., in a series of 22 patients with Charcot deformity without osteomyelitis, were able to attain a 91% incidence of short term (58 weeks) limb-salvage utilizing a combined approach. Flap closure was used for wound coverage in the 8 patients with ulcerations [14].

Lamm and colleagues obtained impressive results with a novel two-stage approach to midfoot Charcot deformity correction [15]. Their protocol first obtains correction through gradual distraction and realignment with a Taylor Spatial Frame. Prior to application, a percutaneous Gigli saw osteotomy is performed across the coalesced midfoot to allow for manipulation of the forefoot on a fixed hindfoot, utilizing wires affixed to the frame on either side of the osteotomized segment. This correction is successively maintained with a minimally invasive arthrodesis technique consisting of percutaneously inserted partially threaded, cannulated, intramedullary metatarsal screws after frame removal. The guidewires are used to stabilize the foot before the frame is removed.

All patients underwent Ilizarov external fixation, with additional internal fixation at the location(s) of deformity and bone resection as needed. The authors contend this approach may be especially beneficial in those patients with bone quality insufficient to rely solely on internal fixation, thus requiring stabilization away from the internal site of correction. While the results of dual fixation appear promising, a recent systematic review did not reveal any added benefit of combined fixation [16].

One of the tenants of the Charcot reconstruction “superconstruct” is to extend the area of fixation beyond the osseous segments affected by the neuropathic process [17]. In many of our constructs, a static circular fixator fulfilled this objective whether in isolation or combined with internal fixation. Combined fixation was utilized in 14/24 (58%) of our reconstructions.

In a review of the Charcot literature in the last 5 years, it would seem that the most common location of deformity undergoing operative intervention is that of the hindfoot and ankle [16]. There appears to be a reduced trend for surgical treatment of midfoot Charcot deformity. Lamm advocates primarily for non-operative care in Charcot deformities limited to affliction at the Lisfranc complex, given the inherent anatomic stability at this location [18]. In our current study, two patients with isolated Lisfranc deformity were treated surgically. The remaining patients with Lisfranc degeneration also had pathology at the more proximal midfoot and Chopart’s joints that warranted remedial alignment with fixation.

Our study had a number of limitations. The most notable methodological weakness is the retrospective nature of the design. Two authors were responsible for gathering, compiling, and analyzing data from the patient medical records. This could have inadvertently increased the potential for bias in our results. Additionally, this method is somewhat limited by the accuracy and quality of documentation. However, the patient records were thoroughly reviewed by each of the two reviewing authors independently, and a unified agreement was reached regarding any discrepancies. Given our sample size and the diversity of fixation methods and deformities, we could not set out to correlate various patient factors, types of fixation, and deformity level, to the obtained outcomes. The heterogeneity of Charcot deformity both in pattern of deformity and temporality of presentation, together with each unique host, render such undertakings of outcome based comparisons arduous, requiring a multitude of patients. Rather, we contend we have shown that in a high risk patient population affected by Charcot deformity, limb salvage efforts are effective and without undue sequelae. Indeed, high quality randomized controlled trials are not likely warranted or ethical [19]. The systematic review of Schneekloth appears to agree with this sentiment [16]. The authors report that while the overall quality of literature regarding this topic has improved greatly in recent years, evidence concerning the timing of treatment and the use of different fixation methods remains inconclusive. As a whole, they found that approximately 9% of patients undergoing Charcot reconstruction will undergo major amputation.

In summary, 80% of our limbs have obtained successful outcomes at a follow-up of 3 years, providing vivid examples of how Charcot deformity is amenable to, and even mandates a diverse surgical repertoire to obtain a stable, ulceration free limb. In this approach, the utility of external fixation cannot be understated given the increased propensity for limb salvage [8]. We theorize that this approach, together with more aggressive soft tissue coverage, will offer the highest potential for success. Further research may provide the surgeon with greater knowledge with which to temper their decisions rather than to develop an accepted protocol or gold standard of treatment [19]. Increased understanding of the risk for a secondary Charcot event after reconstruction may be a pivotal factor as well. Given these methods and findings, we hope to better arm the reconstructive surgeon for this formidable task. With ongoing treatment, patient recruitment, and analysis, we aspire to develop this work into one which can more clearly aid the limb salvage specialist in their decision making amongst a host of surgical options.

References

  1. Grant WP, Garcia-Lavin SE, Sabo RT, Tam HS, Jerlin E. A retrospective analysis of 50 consecutive Charcot diabetic salvage reconstructions. J Foot Ankle Surg 48:30-83, 2009
  2. Mulhern JL, Protzman NM, Levene MJ, et al. Is subtalar joint cartilage resection necessary for tibiotalocalcaneal arthrodesis via intramedullary nail? A multicenter evaluation. J Foot Ankle Surg 55:572-77, 2016.
  3. Zgonis T, Roukis TS, Lamm BM. Charcot foot and ankle reconstruction: current thinking and surgical approaches. Clin Podiatr Med Surg 24:505-17, 2007.
  4. Domek N, Dux K, Pinzur M, Weaver F, Rogers T. Association between hemoglobin A1c and surgical morbidity in elective foot and ankle surgery. J Foot Ankle Surg 55:939-43, 2016.
  5. Ramanujam CL, Han D, Zgonis T. Lower extremity amputation and mortality rates in the reconstructed diabetic Charcot foot and ankle with external fixation: data analysis of 116 patients. Foot Ankle Spec 9:113-26, 2016
  6. Miller PD. Chronic kidney disease and the skeleton. Bone Res 2:140-44, 2014.
  7. U.S. Renal Data System, USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2013. Chapter Five: Mortality, Volume 2.
  8. Dayton P, Feilmeier M, Thompson M, Whitehouse P, Reimer RA. Comparison of complications for internal and external fixation for Charcot reconstruction: a systematic review. J Foot Ankle Surg 54:1072-75, 2015.
  9. Wiewiorski M, Yasui T, Miska M, Frigg A, Valderrabano V. Solid bolt fixation of the medial column in Charcot midfoot arthropathy. J Foot Ankle Surg 52:88-94, 2013
  10. Caputo GM, Ulbrecht J, Cavanagh PR, Juliano P. The Charcot foot in diabetes: six key points. Am Fam Physician 57:2705–10, 1998.
  11. La fontaine J, Shibuya N, Sampson HW, Valderrama P. Trabecular quality and cellular characteristics of normal, diabetic, and Charcot bone. J Foot Ankle Sur 50:648-53, 2011.
  12. Olivares-navarrete R, Hyzy SL, Slosar PJ, Schneider JM, Schwartz Z, Boyan BD. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine 40:399-404, 2015.
  13. Capobianco CM, Ramanujam CL, Zgonis T. Charcot foot reconstruction with combined internal and external fixation: case report. J Orthopaedic Surg Res 11:5-7, 2010.
  14. Hegewald KW, Wilder ML, Chappell TM, Hutchinson BL. Combined internal and external fixation for diabetic Charcot reconstruction: A retrospective case series. J Foot Ankle Surg 55:619-27, 2016.
  15. Lamm BM, Gottlieb HD, Paley D. A two-stage percutaneous approach to charcot diabetic foot reconstruction. J Foot Ankle Surg. 49:517-22, 2010.
  16. Schneekloth BJ, Lowery NJ, Wukich DK. Charcot Neuroarthropathy in Patients With Diabetes: An updated systematic review of surgical management. J Foot Ankle Surg 55:586-90, 2016.
  17. Sammarco VJ. Superconstructs in the treatment of Charcot foot deformity: plantar plating, locked plating, and axial screw fixation. Foot Ankle Clin. 14:393-407, 2009.
  18. Lamm BM. Surgical reconstruction and stepwise approach to acute Charcot neuroarthropathy. In: Zgonis T, editor. Surgical reconstruction of the diabetic foot and ankle, Philadelphia: Wolters Kluwer; 2009, p. 223-29.
  19. Shazadeh Safavi P, Jupiter DC, Panchbhavi V. A systematic review of current surgical interventions for Charcot neuroarthropathy of the midfoot. J Foot Ankle Surg 56:1249-52, 2017.

A new approach to quantifying the sustainability effects of healthcare: Applied to the diabetic foot

by Stefan Hellstrand1 and Ulla Hellstrand Tang2,3*

The Foot and Ankle Online Journal 12 (3): 5

A vital role for any society is to deliver health care considering: 1) the planetary boundaries, 2) the complexity of systems and 3) the 17 sustainable development goals (SDGs). The aim is to explore the feasibility of a method to quantify the sustainability effects in health-care services. A toolbox was explored in the prevention and care of foot complications in diabetes. People with diabetes run the risk of developing foot ulcers and undergoing amputations. Three relationships between ecosystems and human health and health-care systems were identified as: (i) The economic resources for health care have previously appropriated ecological resources in the economic process. (ii) Health-care systems consume natural resources. (iii) Ecosystems and the landscape affect human well-being. Some types of landscape support human well-being, while others do not. This category also includes the impact of emissions on human health. Diabetes is one of the non-communicable diseases with high mortality and foot complications. With health-promoting interventions, the risk of developing foot ulcers and undergoing amputations can be halved. The toolbox that was used could manage the complexity of systems. Several of the 17 SDGs can be calculated in the prevention of complications in diabetes: quality of life improves, while the costs of healthcare and the burden on the economy caused by people not being able to work decrease. The appropriation of natural resources and the wasted assimilated capacity for the same welfare level decreases, thereby offering an option to deliver health care within the planetary boundaries. 

Keywords: healthcare, sustainability, diabetes, diabetic foot, noncommunicable diseases, NCD, SDG, sustainable development goals

ISSN 1941-6806
doi: 10.3827/faoj.2018.1203.0005

1 – Nolby Ekostrategi, Tolita 8, SE-665 92 Kil, Sweden stefan@ekostrateg.se
2 – The Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
3 – The Department of Prosthetics and Orthotics, Sahlgrenska University Hospital, Gothenburg, Sweden.
* – Corresponding author: ulla.tang@vgregion.se


Achieving sustainable development from local to global level is challenging. One vital part is offering health care to patients in need. One unresolved question remains and that is how to ensure that healthcare is delivered within the planetary boundaries [1,2]. Health care should serve an increasing number of patients diagnosed with non-communicable diseases (NCD) and in need of prevention and care [3]. The intention is to minimise the negative consequences of the disease for the individual, society and the planet.

There is very little scientific research that presents approaches designed to measure the consequences of health care in the three dimensions of sustainability; ecological, economic and social. Tools such as analytical hierarchical processes have been used to manage and evaluate the complexity of the health-care system in relation to the social aspects using semi-quantitative measurements [4]. The authors Aljaberi et al encourage health-care professionals to collect data, in particular data on patient satisfaction, as a basis for further analysis of the sustainability dimension of health-care systems. However, two important dimensions, the ecological and the economic, were left out of their analysis. The definition of sustainability that the authors used was put forward in 1992 by the International Institute for Sustainable Development in conjunction with Deloitte & Touche and the World Business Council for Sustainable Development: “For the business enterprise, sustainable development means adopting business strategies and activities that meet the needs of the enterprise and its stakeholders today, while protecting, sustaining and enhancing the human and natural resources that will be needed in the future” [5]. Twenty-three years later, in 2015, the UN approved the 17 Sustainability Development Goals (SDG) to secure a life for future generations on our planet, not only limited to the business enterprise but also including all aspects of life [6]. 

A substantial percentage of Gross Domestic Product (GDP) funds health-care systems. With well-functioning health care, the benefits to the individual and to society are substantial. Dealing with sustainability means dealing with complex systems and complexity. The complexity is expressed in the 17 sustainable goals the UN approved in 2015 [6]. At national level, Sweden manages the 16 Swedish national environmental quality objectives [7]. The systems in which sustainability is an issue are typically complex. To a significant degree, their complexity stems from the fact that life, bios, is a vital system-defining element. No system of importance for ecological, economic or social sustainability is possible, if we assume life outside the borders of the system. This information is fairly general. Is it necessary? The OECD made an important contribution to the definition of sustainable development and how to achieve it [8]. Two of the main problems that were identified were the implementation gap and knowledge gap respectively. Despite knowing fairly well how policies supporting sustainable development should be designed, implementation is at a low and varying level [1]. In the 2000s, some authors [9-13] concluded that the implementation gap and the closely related knowledge gap were caused to a substantial degree by inappropriate analytical and management tools. 

With life as a crucial system element, it is clear that all processes are driven by a flux of energy by which quality is degraded. The sum of energy is constant, while the quality of energy is degraded. From an energy perspective, the system is a linear one. 

Cells, organs, individuals and ecosystems represent different system levels in biological and ecological systems. Feedback loops at each of these levels and between them are important for the efficient use of available resources [14, 15]. The linear flux of energy with quality drives loops of matter. These reinforcing loops may include a number of system levels, as well as all three sustainability dimensions. This results in systems with mutual dependence between system levels and the three sustainability dimensions. With the existence of thresholds, and the nature of interconnections, the system typically has features such as thresholds, irreversibility and resilience. The knowledge gap and demand for analytical tools that takes account of thresholds, irreversibility and resilience has been addressed by the Rockefeller Foundation-Lancet Commission on planetary health [1]. 

Within life sciences, irreversibility is easily understood. The process from living to dead cannot be reversed. Resilience is a phenomenon that requires some effort to understand. A resilient system is able to withstand stress from internal and external sources without changing its character. If the source of stress is removed, it returns to its original status. Systems that are not resilient are pushed away by internal and/or external sources from the domain of an operating balance space or point, into a phase of rapid, unpredictable change. Its system conditions then experience rapid, catastrophic changes. Some important considerations:

  1. A change in a well-defined part of a system may affect a hierarchy of sustainability goals from low to high system levels in the ecological, economic and social dimensions
  2. Instruments from mathematics, such as differential functions and linear and non-linear algebra, are of importance in analytical and management tools supporting sustainable health care. 

With a multitude of goals in different dimensions and system levels, there is a need for instruments that support the optimisation of utilised resources. With systems with reinforcing loops operating close to the borders of chaos, differential functions are tools that are able to extract order from chaos. 

As mentioned before, the OECD found that the understanding of what sustainable development is and how to achieve it was well understood [8]. In spite of this, policies for sustainable development that were in place were on a low, uneven level. The OECD expressed great concern about this and related it to two closely related obstacles they called the implementation gap and the knowledge gap. 

These gaps reflected a broken connection between 

  1. A general understanding of what sustainable development is and the policies needed to promote it, expressed in fields and policy contexts such as classic economic theory back to the 18th century, agricultural sciences as living knowledge until the Second World War, system ecology and ecological economics from around 1990, the UN Millennium Development Goals [6], the OECD [8], the Millennium Ecosystem Assessment [16] and the Economics of Ecosystems and Biodiversity [17], on the one hand, and
  2. Instruments and concepts in common practice with the aim of putting sustainable development in place, on the other hand [10]. 

Typical instruments and concepts in (2) are life cycle assessments, in accordance with the ISO 14 001 system, the Best Available Techniques (BAT) principle in the Integrated Pollution Prevention and Control Directive in the EU, the Integrated Production Policy from the EU Commission and a number of other policies from the same scientific ground, suffering from the same drawbacks [10]. As these concepts and tools are derived from engineering sciences, they do not express the competence relating to systems where life, bios, defines system characteristics. Their “default solution” when managing the complexity of life, e.g. in the understanding of the impact of the use of natural resources and the emissions in biological and ecological systems actually affected by production, is to assume that this complexity does not exist [9, 10, 12, 13].

Within agricultural and forestry science and practice, tools that are able to manage this complexity have emerged over hundreds of years of theoretical development and of trial and error in practice. A similar development has been seen in system ecology and economic theory during the last few decades. A combination of contributions from agricultural sciences, forestry sciences, system ecology, integrative assessments, applied environmental sciences and economic theory at micro and macro level offers a solution to the implementation gap by resolving the challenge, in everyday actions, of managing complex real-world systems, while being aware of and respecting their genuine complexity due to life as a defining system characteristic. A new approach to calculating the sustainability effects in health care is needed with criteria as mentioned above. An approach of this kind considers the planetary boundaries, the three dimensions of sustainability and the complexity of ecosystems. The aim of the article is to present a new approach to measuring sustainability in health care, applied to the prevention of foot complications in diabetes.

Method

Conceptual model

Tools and methods that considered the planetary boundaries, the three dimensions of sustainability and the complexity of ecosystems were chosen. The toolbox originates from a variety of fields. For example, they supported sustainable animal production systems; sustainable industrial production systems; effective policies to minimise health hazards associated with cadmium fluxes in food systems; milk consumption and the human health impact; physical planning for sustainable attractiveness at local and regional level; sustainable local, regional and national development; the development of certification schemes such as ISO 14 001 to contribute more effectively to improving the status of ecosystems actually affected by production and consumption; the development of public procurement in favour of growth, employment and a better environment in accordance with national environmental objectives [9, 10, 12, 13, 18-26]. 

In what follows, our approach that supports the management of health-care systems in a sustainable society is presented. The accuracy of these instruments is investigated and applied to the prevention of foot complications in diabetes. The effects on the individuals living with diabetes is dramatic, with a lifetime risk of 25% that a foot ulcer will develop, a threatening reality for the 425 million people living with diabetes [27]. Every thirty minutes, an amputation takes places on the planet due to diabetes [28]. People with a lower socioeconomic status are more likely to develop complications such as cardiovascular disease and/or foot ulcers and amputations [29-31]. This means that people already struggling for their lives and surveillance will be marginalised, more vulnerable in the presence of foot ulcers and amputations. Their health-related quality of life will decrease [32-34].

The article presents a new approach that includes a conceptual model, a map, of the economic system in its ecological and social context [13]. From this map of the sustainability landscape, we are able to define different pathways by which we can improve human health and meet the demands of society. One way of estimating the impact of health care on the appropriation of natural capital, man-made capital, human capital and social capital is suggested. We use the diabetic foot as a case in this exercise. The hypothesis is that a set of these instruments developed with the aim of supporting the effective management of natural resources, with the emphasis on acreage-dependent sectors, is able to significantly improve the efficiency of health-care systems in meeting the 17 SDGs. The toolkit has five internally consistent instruments:

  1. A conceptual model of the GDP part of the economy embedded in its ecological and social contexts where stocks of natural, man-made, human and social capital are located [11].
  2. From the conceptual model, Biophysically Anchored Production Functions (BAPFs) are constructed showing how the GDP economy is dependent on nature and delivers resources for the fulfilment of human needs [13].
  3. An application based on the general features of Impredicative Loop Analysis by which the impacts in a hierarchy of sustainability sub-goals of a specific change in a specific production process can be evaluated [20].
  4. From BAPFs, ecological economic accounts (EEA) can be derived by which the sustainability performance of any system can be evaluated [10-12]. 

In what follows, the conceptual model of the economic system in its ecological and social context is presented in some detail. This supports the understanding of health care in a broader sustainability context. The conceptual model of the economy in its ecological and social context is presented, Figure 1 [12].

The model consists of three compartments, where the first refers to nature, to ecosystems providing natural resources and taking care of emissions. The second is the traditional economy where goods and services are produced from natural resources and inputs of labour and (traditional) capital. GDP measures the size of the output. The third is the social dimensions where the economic resources that are created to meet human needs, including health care. In all parts of the economy, emissions and waste return to nature. 

With some simplification, Compartment I represents nature, the ecological dimension of the economy, Compartment II represents the economic system, in the narrower sense in which we often discuss it, and Compartment III represents the social dimension of our economy. In reality, they are three closely integrated parts of our economic system.

Compartment I defines ecological restrictions in society, Compartment II provides the means, while Compartment III contains the objective: human well-being. 

From the perspective presented in Figure 1, the challenge of health care is to use appropriated economic resources as efficiently as possible in order to improve the health of the population. It focuses on preventing and/or compensating for the functional loss of the individual. With the efficient use of economic resources, the needs of the people suffering from illnesses are met, while the economic burden on the rest of the economy is kept down. This increases the demand for goods and services from households, which stimulates the economy. At the same time, the competitiveness between enterprises is increased, while everything else is equal. The efficiency measurement referred to implicitly is the ratio between the level of health in the population as the numerator and the economic cost of providing it as the denominator. With efficient health care, the level of health in the numerator is increased, while everything else is equal, which improves the life quality of individuals, thereby improving the social capital. With improved health, the productivity of the same individuals increases and the stock of human capital is thereby also improved.

Relationships between nature and health care

There are three types of relationship between health and health care and NC (Natural Capital) and NR (Natural Resources), as shown in Figure 1. 

  1. The appropriate economic resources are produced in the GDP economy where NR are upgraded to goods and services through the input of labour and capital, while, on the output side, potentially harmful emissions are generated. Health care thus appropriates NR embedded in the economic resources that are used and indirectly cause emissions that can harm human health and ecosystem health. This is the indirect support to service sectors such as health care from nature [35, 36]. 
  2. The health-care system also directly consumes NR, by using the energy needed to build and heat/cool the buildings, fuel the equipment and transport personnel and patients to and from hospitals [35, 36].
  3. The third type of relationship relates to the way ecosystems and the landscape affect human well-being. Some landscapes support human well-being, others do not. This category also includes the impact of emissions on human health. The first two relationships are connected to the appropriation of ecological resources in the production of health. The third relationship relates to the demands on health care to the needs to be met.

Through emissions and changes in land use, the capacity and quality of the life-support system of ecosystems are affected. In maps of Europe [10, 11] the effect on (i) expected human life expectancy due to the emission of particles into the air is presented, as well as (ii) the deposits of nitrogen exceed the assimilative capacity of ecosystems. The congruence in the geography of these human health and ecosystem health impacts is profound. 

The United Nations Environment Programme (UNEP) [37], in collaboration with the World Health Organisation (WHO), estimated that, in 2012, 12.6 million deaths, or 23 per cent of the total, were due to deteriorating environmental conditions [38]. Air pollution which, according to the UNEP, kills seven million people across the world each year, dominates. Of these, 4.3 million are due to household air pollution, particularly among women and young children in developing countries. There is an uneven distribution of deaths due to environmental deterioration, with the highest proportion of deaths attributable to the environment in South-East Asia and in the Western Pacific (28 per cent and 27 per cent respectively). The percentage of deaths attributable to the environment is 23 per cent in sub-Saharan Africa, 22 per cent in the Eastern Mediterranean region, 11 percent and 15 per cent in OECD and non-OECD countries in the Americas region and 15 per cent in Europe.

In the case of the diabetic foot, the transport of personnel and patients to and from providers of health care consumes energy and causes a multitude of emissions, harming the health of ecosystems and of humans. The emissions from hospitals should be considered. Health-care services located in areas stressed by high emission rates have a greater negative impact on human health compared with health-care services localised in areas with forests and land. Forests and land assimilate emissions [10, 39]. 

Non-communicable diseases (NCDs) are a group of diseases with a substantial impact on health [3].They kill 41 million people each year. Cardiovascular diseases account for most NCD deaths, or 17.9 million people annually, followed by cancers (9.0 million) and respiratory diseases (3.9 million). Tobacco use, physical inactivity, the harmful use of alcohol and unhealthy diets all increase the risk of dying from an NCD. The facts in the UNEP [37] and the WHO [38] imply that environmental issues are a substantial category of factors causing NCDs. This is supported by Lim et al. [40].

Health care and Agenda 2030 with 17 SDGs

Society can work through three major pathways to improve human health; traditional health care when illness is present, preventing illnesses by lifestyle changes within the population and by upgrading the quality of the environment and life-support systems. Odum [15] describes in detail the life-support systems of ecosystems, providing the physiological necessities for all life. In 2015, the UN [6] approved 17 SDGs. They form the basis of Agenda 2030. The overall objective of County Administrative Boards in Sweden, the regional representation of the national government, is to support the implementation of the 17 SDGs at regional level, in each county. The first paragraph in the task assigned to them is, at regional level, to contribute to sustainable, enduring solutions. The second is to contribute to the implementation of Agenda 2030 [41]. In Sweden, there is also a system of 16 environmental quality objectives [7]. Their role is to lay the environmental foundation for economic and social development within affected ecosystems carrying capacity limits. They agree well with the 17 SDGs from the UN with their foundation in the need for ecological sustainability as a prerequisite for economic and social sustainability. The recommendation from the UNEP [37] to reduce the number of deaths due to environmental deterioration reflects the purpose of the UN’s 17 SDGs. 

The presented toolbox supports policies that improve (i) health, by lowering the environmental burden on the ecosystem and human health, and (ii) diet patterns and physical activity, for example, to benefit both ecosystem health and human health, thus lowering NCDs. 

In what follows, an approach is presented in which the capacity of the toolbox to help health-care systems to comply with the 17 SDGs and the Swedish environmental quality objectives is tested. We do this using the case of diabetes and the prevention of diabetic foot ulcers (DFU).

Costs associated with diabetes and the diabetic foot

From 1980 to 2014, the prevalence of diabetes rose by a factor of 3.9, to 422 million people in 2014 [42]. In 1980, 4.7% of adults had diabetes and, in 2014, it was 8.5%. The rate of the increase in diabetes is highest in low-income and middle-income countries. If we add up the effect of diabetes and high blood glucose, 3.8 million deaths were related to these causes in 2012 [43]. The social and economic costs of diabetes to the individual and to society are therefore significant. Lowering the prevalence of diabetes will improve social and human capital (see Figure 1) and support a number of the 17 SDGs. 

A healthy diet, regular physical activity, maintaining a normal body weight and avoiding tobacco use are ways to prevent or delay the onset of diabetes type 2. For patients with diabetes it is important to maintain good function in the feet and in the lower extremities. 

The cost of the treatment of DFUs is substantial. In one study with data from Sweden, the span was 993-17,519 US$ [44, 45]. Table 1 presents estimates of treatment costs for diabetic foot ulcers at regional, national and global level [46]. 

Treatment costs US$ 2015
Patients, no Per patient Total, millions
Region Västra Götaland 3,000 5500 16.5
Sweden 20,000 5500 110
Global 20,000,000 5500 110000

Table 1 Estimated regional, national and global costs for treating DFUs in 2015. The equivalent of 5,525 US$ of 2015 converted from figures from 1990 per treatment of DFUs (5000 US$) was originally provided by Apelqvist et al. (1995) and refers to Sweden. Available 2018-07-12. http://www.historicalstatistics.org/Currencyconverter.html. 

Region Västra Götaland is one of the counties in Sweden. The estimated cost relates to the treatment of DFUs not infected or in need of intervention due to artery disease. The estimate is therefore conservative. We assume the same cost at regional level in Sweden (Västra Götaland) and global level as well. The estimate agrees well with the figures from Prompers et al [47], presenting estimates at European level, suggesting that the estimate is relevant at international level as well. 

The prevalence of DFUs is set at 5% among patients with diabetes [48]. The estimate is based on a population-based annual incidence of DFUs of 1.0-7.2% [49-53]. The number of patients with diabetes in Västra Götaland, in 2015, was approximately 60,000, in Sweden 400,000 [54] and globally 400 million people [55].

Results

By using the example of DFUs and the need for early prevention and treatment as an example, we shall now outline how the principles presented in previous parts can be considered in everyday practice in health care. We, therefore, present a proposal for ways of operationalising the UN’s 17 SDGs in health-care systems from the level of individual treatment to aggregated effects regionally, nationally and globally.

Of the population of people suffering from diabetes, it is estimated that 50% are in need of preventive foot care. This is based on the presence of the risk factor of loss of protective sensation, which can be as high as 50% in patients with diabetes [46]. Using early monitoring, patients at risk are identified, enabling intervention at an early stage [56]. Promising results show a reduction in the amputation rate of 40% to 60% [57] and DFUs of 50% [58]. Halving the presence of small DFUs leads to a reduction in ulcers that might develop into severely infected ulcers and amputations. 

One part of early treatment is the provision of insoles from a Department of Prosthetics & Orthotics (DPO) [59]. Insoles reduce the risk of pressure-induced DFUs [58, 60]. Insoles can be prefabricated or custom made or traditionally made [46]. Assume that we have custom-made insoles. Two visits to a health-care provider are needed. The costs associated with this solution are:

  • Time appropriated by
    1. The patient
    2. The staff at the health-care provider
  • Energy (with quality) consumed for
    1. Transportation to and from the health-care provider
    2. Heating of buildings and for the production of insoles 
  • Emissions from energy consumption potentially harming human and ecosystem health. 

The time appropriated by patients can be leisure time, or times when the patient would otherwise have worked, contributing to GDP.

The energy cost can be measured in both monetary and physical terms. Both are of interest. When measuring in physical terms, information is gathered that makes it possible to evaluate future risks and opportunities in relation to possible changes in the price of energy. The available amount of fossil fuels is limited. In 2015, fossil fuels provided 86% of the global energy budget [61]. 

The climate challenge calls for action which, in a fair number of decades, will eliminate the increase in greenhouse gases in the atmosphere [6, 7]. Energy consumption causes the emission of a spectrum of substances that affect the majority of the 16 environmental quality objectives in Sweden and those of the UN’s 17 SDGs that are related to emissions and their impact on ecosystems and human health. Regarding energy systems, we also have a range of aspects related to hydropower and nuclear power to consider, as well as contributions to climate change. Renewable fuels are of increasing importance for the supply of energy.

Taken together, the limitedness of non-renewable natural resources, fossil fuels, their dominance among energy sources in the economy from local to global level and the environmental and human health impacts of these energy sources and of hydropower and nuclear power all indicate a future, substantial transformation of the energy systems from local to global level. This transformation to future energy systems effectively supporting a sustainable society will cause a change in energy prices. 

Since 1998, there has been a substantial increase in the fixed level of global oil prices [10]. This may affect the outcome with regard to the rational localisation of future health care in the landscape. As a result, there are good economic reasons for health-care providers to be in control of their energy consumption in both economic and physical terms.

The time that each patient appropriates from the staff is time during which the staff are unable to support other groups of patients within budget restrictions. 

Figure 1 A conceptual model of the economy in its ecological and social contexts.

Assume that we have a solution where we can offer the same benefits to the patient with only one visit (the system with prefabricated insoles). If so, the above-mentioned costs can be cut by 50% per patient treated. On a regional, national and international scale, this would substantially improve the contribution to a number of ecological, economic and social sustainability goals.

So far, we have not dealt with the challenge of health-care systems that operate within affected ecosystems with capacity limits. The toolbox for sustainable development mentioned above [10] supports a solution to this challenge. It thus supports the emergence of health-care systems promoting Agenda 2030.

The production of ecosystem services from the life-support systems of ecosystems can be quantified. These systems are located in rural areas, in the so-called cultural and natural landscapes as defined within system ecology [15]. The contribution from Odum laid the scientific foundation for most of the work that has subsequently been devoted to the issue of ecosystem services and their importance for human well-being: the OECD [8], the Millennium Ecosystem Assessment [16] and the Economics of Ecosystems and Biodiversity [17].

Ecosystems are Compartment 1 in the model of the economic system in its ecological and social contexts in Figure 1. This is the ecological dimension of our economy and of our society. Using the same tools, the consumption of ecosystem services can also be quantified.

So, using the same tools deeply rooted in natural sciences, including agricultural sciences and system ecology, we are able to quantify the sustainable production of ecosystem services, as well as consumption. With this information related to the demand for and supply of ecosystem services, the human appropriation of ecosystem services can be adapted to affected ecosystems with capacity limits.

This suggests a way in which the appropriation of natural resources and the emissions related to the treatment of the diabetic foot are related to the area of ecosystems with the capacity to deliver natural resources and assimilate emissions. This suggests a methodological route to evaluate the pressure on nature from health-care systems and to adapt health-care systems and other socioeconomic systems to the carrying capacity of affected ecosystems.

Through this route, ecological and economic dependence between rural and urban areas can be visualised and policies that contribute to their mutual development in a sustainability context can be effectively implemented. 

Discussion

This paper presents a framework for measuring sustainability in health-care using a toolbox supporting the effective management of natural resources. Analytical tools evaluating the sustainability performance in health care in ecological, economic and social terms are a prerequisite for the management of health-care systems, in agreement with the UN’s 17 SDGs. Using a sustainability map, three types of relationship between ecosystems and human health and health-care systems were identified. 

  1. The economic resources needed to cover the cost of health care have previously appropriated ecological resources in the economic process, at the same time as good health care may reduce future economic costs and thereby the ecological resources that are appropriated. 
  2. Health-care systems consume natural resources.
  3. Ecosystems and the landscape affect human well-being. Some types of landscape support human well-being, while others do not. This category also includes the impact of emissions on human health. 

Diabetes, one of the NCDs, has a substantial impact on the health level of societies. In Sweden, around 20,000 patients with diabetes suffer from DFUs, while the global figure is 20 million people. With preventive interventions, the prevalence can be halved, saving 50 million USD in health-care costs in Sweden and 50 billion USD globally. 

Further research should preferably present details in ecological units, economic monetary terms and social terms from a real case for the two alternatives: the supply of insoles with one visit as compared with two visits to a DPO.

Effective, preventive interventions reduce the cost of health care, as well as the burden on the economy imposed by people who are not able to work. Life quality, i.e. social sustainability, is improved. The appropriation of natural resources and the waste of assimilative capacity for the same welfare level decrease. As a result, ecological, economic and social sustainability is improved – a prerequisite for development within the planetary boundaries.

Abbreviations

BAPF; Biophysically Anchored Production Functions, GDP; Gross Domestic Product, NC; natural capital, NCD; non-communicable diseases, NR; natural resources, SDG; Sustainable Development Goals, WHO; World Health Organisation, UNEP; United Nations Environment Programme

Acknowledgements

We are most grateful for the useful comments on the manuscript made by Professor Jon Karlsson, Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg. The Department of Prosthetics & Orthotics at Sahlgrenska University Hospital, Gothenburg, Sweden, encouraged the project. Thanks to all co-workers at the department and to graphic designer Pontus Andersson.

Availability of data and materials

Not applicable.

Authors’ contributions

S.H and U.H.T wrote the main manuscript text. S.H. prepared Figure 1. U.H.T prepared Table 1. All the authors reviewed the manuscript.

Funding

This research was supported by by Stiftelsen Promobilia, Stiftelsen Skobranschens Utvecklingsfond, the Research and Development Council of the County of Göteborg and Södra Bohuslän, the Health & Medical Care Committee of the Västra Götaland Region, Stiftelsen Felix Neubergh, Stiftelsen Gunnar Holmgrens Minne, IngaBritt & Arne Lundbergs Forskningsstiftelse, Adlerbertska forskningsstiftelsen, Diabetesfonden, the Gothenburg Diabetes Association (Inger Hultman med fleras fond and Utvecklingsfonden) and Sveriges Ortopedingenjörers Förening, Greta och Einar Askers Stiftelse and Hans Dahlbergs stiftelse för miljö och hälsa.

Competing interests

S.H. manages Nolby Ekostrategi but does not consider this to be a conflict of interest in this work. UT declares no competing interests.

References

  1. Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza Dias BF, et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. The Lancet. 2015;386(10007):1973-2028.
  2. Wijkman A, Rockström J. Bankrupting Nature: Denying Our Planetary Boundaries: Taylor and Francis; 2013.
  3. World Health Organisation. Noncommunicable diseases. 2018.
  4. Aljaberi OA, Hussain M, Drake PR. A framework for measuring sustainability in healthcare systems. International Journal of Healthcare Management. 2017:1-10.
  5. Deloitte, Touche. Business strategy for sustainable development: Leadership and accountability for the ’90s. International Institute for Sustainable Development Winnipeg Canada: IISD, jointly with Deloitte and Touche; Business Council for Sustainable Development. West Sussex: IISD; 1992. 29- p.
  6. United Nations. Sustainable Development Goals. https://www.un.org/sustainabledevelopment/development-agenda/. 2015. Accessed 14 April 2019.
  7. Swedish Environmental Protection Agency. Swedish Environmental Objectives. https://www.miljomal.se/sv/Environmental-Objectives-Portal/ 2018. Accessed 8 Dec 2018.
  8. OECD. Policies to Enhance Sustainable Development. Meeting of the OECD Council at ministerial level. 2001.
  9. Hellstrand S. Animal production in a sustainable agriculture. Environment, Development and Sustainability. 2013;15(4):999-1036.
  10. Hellstrand S. On the value of land 2015.
  11. Hellstrand S. The challenges of measuring sustainability performance. In: Dahlquist E, Hellstrand S, editors. Natural resources available today and in the future: how to perform change management for achieving a sustainable world: Springer; 2017.
  12. Hellstrand S, Skånberg K, Drake L. The relevance of ecological and economic policies for sustainable development. Environment, Development and Sustainability. 2009;11(4):853-70.
  13. Hellstrand S, Skånberg K, Drake L. A biophysically anchored production function. Environment, Development and Sustainability. 2010;12(4):573-96.
  14. Odum E. Fundamentals of ecology. 3. ed. ed. Philadelphia: First edition 1971 USA: W. B. Saunders Company, third edition 1991 New Delhi: Natraj Publishers; 1991.
  15. Odum E. Ecology and our endangered life-support systems. 2. ed. ed. Sunderland, Mass.: Sunderland, Mass. : Sinauer Associates; 1989.
  16. Millennium Ecosystem Assessment. Overview of the Milliennium Ecosystem Assessment. http://www.millenniumassessment.org/en/About.aspx. 2005. Accessed 8 Dec 2018.
  17. TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB. 2010.
  18. Hellstrand S. Methods for operationalizing an ecologically effective and economically profitable sustainable development [Natural Resources Management]: Stockholm University; 1998.
  19. Hellstrand S. Ecological Economic Accounts on the Regional Scale. Outcomes for one rural and one urban region in Sweden 2000. Institutionen för samhällsvetenskap Karlstads universitet; 2003.
  20. Hellstrand S. A Multi-Criteria Analysis of Sustainability Effects of Increasing Concentrate Intensity in Swedish Milk Production 1989–1999. Environment, Development and Sustainability. 2006;8(3):351-73.
  21. Hellstrand S. Värdet av den svenska skogens leverans av ekosystemtjänster. Uppdrag för LRF Skog; 2014.
  22. Hellstrand S. Inventering ekosystemtjänster Värmlands län. Uppdrag för Paper Province; 2015.
  23. Hellstrand S. Nyckeltal för styrning mot ett hållbart och attraktivt Kil. Uppdrag för Kils kommun.; 2015.
  24. Hellstrand S, Landner L, editors. Role of phosphorus in sustainable agriculture and the cadmium issue. . Proceedings of the SCOPE workshop, Belgian Academy of Sciences, Brussels, Belgium, financially supported by the Royal Academy of Sciences of Belgium, the Institute Mondial du Phosphate (IMPHOS) and the US National Institute of Environmental Health Sciences; 2001 13-16 of September; Brussels, Belgium.
  25. Hellstrand S, Yan J, editors. The potential to increase sustainable global green energy production through increased efficiency in milk and cattle production: a Swedish case. First International Conference on Applied Energy; 2009 5-7 January 2009; Hong Kong.
  26. Hellstrand S, editor Reduction of the Discharges on the Local Level not Always Sustainable: – A Swedish Example, . Pulp & Paper Conference; 1997 March 9-13, 1997; Orlando, Florida.
  27. InternationaL DIABETES FEDERATION. Clinical Practice Recommendations on the Diabetic Foot – 2017. 2017.
  28. INTERNATIONAL DIABETES FEDERATION. IDF DIABETES ATLAS – 8th edition 2017. 2017.
  29. Navarro-Peternella FM, Lopes APAT, de Arruda GO, Teston EF, Marcon SS. Differences between genders in relation to factors associated with risk of diabetic foot in elderly persons: A cross-sectional trial. Journal of Clinical & Translational Endocrinology.6:30-6.
  30. Nather A, Siok Bee C, Keng Lin W, Qi Odelia KS, Yiong Huak C, Xinyi L, et al. Socioeconomic profile of diabetic patients with and without foot problems. Diabetic Foot & Ankle. 2010;1:10.3402/dfa.v1i0.5523.
  31. Rawshani A, Svensson A-M, Rosengren A, Eliasson B, Gudbjörnsdottir S. Impact of Socioeconomic Status on Cardiovascular Disease and Mortality in 24,947 Individuals With Type 1 Diabetes. Diabetes Care. 2015;38(8):1518-27.
  32. Raspovic KM, Wukich DK. Self-Reported Quality of Life and Diabetic Foot Infections. The Journal of Foot and Ankle Surgery. 2014;53(6):716-9.
  33. Ribu L, Hanestad BR, Moum T, Birkeland K, Rustoen T. Health-related quality of life among patients with diabetes and foot ulcers: association with demographic and clinical characteristics. J Diabetes Complications. 2007;21(4):227-36.
  34. Ragnarson Tennvall G, Apelqvist J. Health-related quality of life in patients with diabetes mellitus and foot ulcers. J Diabetes Complications. 2000;14:235-41.
  35. Odum HT. Self-organization, transformity, and information. Science (New York, NY). 1988;242(4882):1132.
  36. Odum HT. Environmental accounting : EMERGY and environmental decision making. New York: New York : Wiley; 1996.
  37. UNEP. HEALTHY ENVIRONMENT, HEALTHY PEOPLE. 2016.
  38. World Health Organisation. Preventing disease through healthy environments. 2016.
  39. Viglizzo EF, Ricard MF, Taboada MA, Vázquez-Amábile G. Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. Sci Total Environ. 2019;661:531-42.
  40. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224-60.
  41. The Swedish Government. Regleringsbrev för budgetåret 2017 avseende länsstyrelserna. In: Finansdepartementet, editor. 2016.
  42. World Health Organisation. Global report on diabetes. 2016.
  43. World Health Organisation. Diabetes fact sheet. 2018.
  44. Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet. 2005;366(9498):1719-24.
  45. Ragnarson Tennvall G, Apelqvist J. Health-Economic Consequences of Diabetic Foot Lesions. Clin Infect Dis. 2004;39(S2):132-9.
  46. Hellstrand Tang U. The Diabetic Foot – assessment and assistive devices. Gothenburg: University of Gothenburg; 2017.
  47. Prompers L, Huijberts M, Schaper N, Apelqvist J, Bakker K, Edmonds M, et al. Resource utilisation and costs associated with the treatment of diabetic foot ulcers. Prospective data from the Eurodiale Study. Diabetologia. 2008;51(10):1826-34.
  48. Boulton A, Armstrong DG, Albert SF, Frykberg RG, Hellman R, Kirkman MS, et al. Comprehensive Foot Examination and Risk Assessment: A report of the Task Force of the Foot Care Interest Group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. Diabetes Care. 2008;31(8):1679-85.
  49. Abbott CA, Vileikyte L, Williamson S, Carrington AL, Boulton AJ. Multicenter study of the incidence of and predictive risk factors for diabetic neuropathic foot ulceration. Diabetes Care. 1998;21(7):1071-5.
  50. Reiber GE. The epidemiology of diabetic foot problems. Diabetic medicine : a journal of the British Diabetic Association. 1996;13 Suppl 1:6.
  51. Lavery L, Armstrong D, Wunderlich R, Tredwell J, Boulton A. Diabetic foot syndrome: evaluating the prevalence and incidence of foot pathology in Mexican Americans and non-Hispanic whites from a diabetes disease management cohort. Diabetes Care. 2003;26:1435 – 8.
  52. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA. 2005;293(2):217-28.
  53. Henriksson F, Agardh CD, Berne C, Bolinder J, Lönnqvist F, Stenström P, et al. Direct medical costs for patients with type 2 diabetes in Sweden. J Intern Med. 2000;248(5):387-96.
  54. Nationella Diabetes Registret. Årsrapport 2016.
  55. INTERNATIONAL DIABETES FEDERATION. IDF DIABETES ATLAS, eighth edition 2017. 2017.
  56. Socialstyrelsen. Nationella riktlinjer för diabetesvård 2015.
  57. Moxey PW, Gogalniceanu P, Hinchliffe RJ, Loftus IM, Jones KJ, Thompson MM, et al. Lower extremity amputations — a review of global variability in incidence. Diabet Med. 2011;28(10):1144-53.
  58. Bakker K, Apelqvist J, Schaper NC, on behalf of the International Working Group on the Diabetic Foot Editorial Board. Practical guidelines on the management and prevention of the diabetic foot 2011. Diabetes Metab Res Rev. 2012;28(1):225-31.
  59. World Health Organization. Priority Assistive Products List. 2016.
  60. van Netten JJ, Price PE, Lavery LA, Monteiro-Soares M, Rasmussen A, Jubiz Y, et al. Prevention of foot ulcers in the at-risk patient with diabetes: a systematic review. Diabetes Metab Res Rev. 2016;32 Suppl 1:84-98.
  61. 61. BP. BP Statistical Review of World Energy June 2016. 2016.

Conservative surgical management in an extreme diabetic foot case

by JM García-Sánchez1, A Ruiz-Valls1, A Sánchez-García1, A Pérez-García1

The Foot and Ankle Online Journal 11 (1): 2

Diabetes mellitus is one of the most prevalent diseases worldwide and an important cause of morbidity and mortality. Of relevance, due to its complicated management, morbidity and cost associated, is the diabetic foot. Here we present a case of a 51 year-old male diagnosed with  long-standing decompensated Diabetes mellitus with a 2 year history of a foot ulcer. After debridement of the ulcer, preservation of the bony structure was achieved by covering it with a fillet flap. The therapeutic management in patients with advanced diabetic foot should be individualized based on patient characteristics. Oftentimes, conservative amputations entail the need of complex surgical techniques, however, it allows the patient to retain their independence and an improved quality of life.

Keywords: diabetic foot, ulcer,  diabetes mellitus, fillet flap

ISSN 1941-6806
doi: 10.3827/faoj.2018.1101.0002

1 – Department of Plastic, Reconstructive and Aesthetic Surgery, Hospital Universitari i Politèctnic la Fe, Valencia, Spain.
* – Corresponding author: alejruvall@gmail.com


Diabetes mellitus (DM) is one of the most common diseases worldwide with a global prevalence of 8.5%, and increasing every year. Sustained hyperglycemia derives in numerous complications, mostly caused by macro and microangiopathy [1], of special importance are Diabetic Foot Ulcers (DFUs).

Diabetic Foot Ulcers represent an important healthcare issue due to the elevated morbidity, complexity of its management and elevated costs associated with this disease [2]. DFUs have a global prevalence of 6.3% and have a higher prevalence in DM type 2 and male patients [3]. Neuropathy is the most important risk factor for the development of DFUs. Moreover, the addition of different factors such as the of loss of skin integrity, existence of foot deformities (Hallux Valgus, Charcot’s arthropathy, etc.), and peripheral vascular disease ultimately lead to the formation of DFUs [4].  

The course of healing the DFU is arduous due to the impaired cicatrization and granulation processes in these patients, which is frequently complicated with superimposed infections.  Some cases, especially when osteomyelitis is present, require limb amputation as the sole therapeutic option. However, it is imperative to remain as conservative as possible, since amputations suppose a great psychological and functional impact that can pose a decrease in quality of life.

Here we present a case of a patient with a complicated DFU that was managed with conservative surgical treatment without undergoing amputation.

Case Report

A 51 year old male was first evaluated in the outpatient setting for a 1-year history of a DFU on the right foot. His medical history included a atrial fibrillation, dyslipidemia, hypertension, and a poorly controlled insulin-dependent DM with development of retinopathy, nephropathy and cardiac disease. The patient was also an active smoker with over 30 years of smoking history. A transmetatarsal amputation from the 2nd to the 5th toes on the right foot was previously carried out in a different hospital due to inadequate healing of a DFU. The surgical wound was complicated with a dehiscence, which remained as an ulcer that impeded the patient from ambulating.

The physical examination showed a lateral subluxation of the first metatarsophalangeal joint, an ulcer on the amputation stump, with granulation on the base and no inflammatory signs, proliferative signs, dermatosclerosis or hyperpigmentation of the skin edges (Figure 1). Additionally, the patient presented signs of chronic venous insufficiency, hence the induration hindered lower limb distal pulse examination. Plantar protective sensation was severely diminished.

An MRI was performed, which showed findings suggestive of osteomyelitis of the remnants of the 3rd, 4th and 5th toe, the anterior portion of the cuboid bone, and the navicular bone of the right foot. These findings were later confirmed with a gamma scan. The CTA scan showed bilateral permeability of the aortoiliac, femoropopliteal, and distal infrapopliteal trunks.

Given these findings a new surgical approach was conducted, with resection of the remnants of the 2nd to 5th toes, cuboid bone, cuneiform bones, as well as the anterior portion of the navicular bone (Figure 2), a fillet flap from the hallucis and the plantar skin was performed to provide coverage of the cutaneous defect (Figure 3).

The pathology report indicated the presence of a verrucous squamous cell carcinoma. However, no infiltrative component was seen in the specimen and the margins were disease free.

Figure 1 A 51 year old male with a lateral luxation of the metatarsophalangeal joint of the hallucis (Left). Ulcer presence on the amputation stump (Right). Frontal (Left) and plantar (Right) view.

Figure 2 Surgical excision of the remnants of the 2nd to 5th toes, cuboid bone, cuneiform bones, as well as the anterior portion of the navicular bone.

The postoperative course was uneventful with a favorable healing towards the resolution of the surgical wound, which was supported by a tight glucose control and a smoking cessation program. Two months after the intervention the patient has a healthy-appearing stump that allows ambulation (Figure 4).

Figure 3 Foot defect after resection (Left). Coverage with a fillet flap from the hallucis and the plantar skin (Right).

Figure 4 Postoperative result two months after the intervention. Frontal (Left) and posterior (Right) view.

Discussion

Complicated diabetic foot poses a risk of amputation and early mortality in diabetic patients. With a 10-fold increase in amputation rate of the lower limb for diabetic patients, according to WHO. Furthermore, the mortality rate is also increased 3-fold within a year of the amputation compared to non-amputated diabetic patients [6].

The course of DFUs is usually difficult owing to a deficient granulation and cicatrization, and commonly complicated with superimposed infections. DFUs that persist over time can sometimes lead to malignant transformation; most frequently squamous cell carcinoma [5]. All of these result in wide surgical excisions and, sometimes inevitably amputations.

There are different amputation levels of the lower limb, those that result in above-the-ankle amputation are considered major amputations, and those that spare the ankle are defined as minor amputations [7]. Regarding amputation-related-mortality, Evans et al, showed a mortality of 20% in the 2-year follow-up after a minor amputation compared to the 52% seen in patients who underwent a major amputation [8].

Numerous studies support the need to be as surgically conservative as possible, with limb conservation procedures, since energetic output is increased progressively as an amputation becomes more proximal [9]. Moreover, several patients present with several comorbidities, as in the case presented, and are non-candidates for rehabilitation after major amputations. Hence, preservation of the majority of the limb with partial minor amputations can result in an improved functional status [10]. Likewise, minor amputations may confer the possibility to ambulate for short distances without the need of prosthesis, allowing the patient to perform many daily-living activities, and thus, having a major impact on quality of life [8].  In some cases, in order to achieve minor amputations, the complexity of the surgical techniques is considerably higher and are often unconventional procedures that surgeons might not be familiarized with. In the case presented, due to patient conditions, impaired sensibility, presence of osteomyelitis, and the condition of the foot soft tissues, initially the decision was to perform a major amputation. Nevertheless, the scarce possibilities for adaptation to a prosthetic device and ambulation after amputation, a more conservative approach was planned. Therefore, preservation of the non-osteomyelitic bone and coverage of the skin defect with an adipocutaneous fillet flap from the hallux and the plantar surface provided a stable coverage without any added morbidity.

The fillet flap is well described in the literature as an alternative for large defects that require coverage without sacrificing the length of the extremity [11].  It provides superb mechanical stability plus an added quasi-normal sensitivity to the stump. Additionally, utilizing plantar tissue also provides an excellent, and long-lasting, surface for the stump [12].

Conclusion

Diabetic patients with DFUs should undergo individualized treatment based on their characteristics. In certain cases, a more conservative amputation, despite being more technically challenging, allows the patient to have a better quality of life as well as more independence.

Conflict of interest declaration

No conflict of interest to disclose.

References

  1. Pérez NF, Pérez CV, Llanes JA. Las amputaciones de dedos abiertas y cerradas: su evolución en el pie diabético. Rev Cuba Angiol Cir Vasc. 2010;11(1):89–100.
  2. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med. 2017 Mar;49(2):106–16.
  3. Al-Rubeaan K, Al Derwish M, Ouizi S, Youssef AM, Subhani SN, Ibrahim HM, et al. Diabetic foot complications and their risk factors from a large retrospective cohort study. PloS One. 2015;10(5):e0124446.
  4. Allen L, Powell-Cope G, Mbah A, Bulat T, Njoh E. A Retrospective Review of Adverse Events Related to Diabetic Foot Ulcers. Ostomy Wound Manage. 2017 Jun;63(6):30–3.
  5. Scatena A, Zampa V, Fanelli G, Iacopi E, Piaggesi A. A Metastatic Squamous Cell Carcinoma in a Diabetic Foot: Case Report. Int J Low Extrem Wounds. 2016 Jun;15(2):155–7.
  6. Hoffstad O, Mitra N, Walsh J, Margolis DJ. Diabetes, Lower-Extremity Amputation, and Death. Diabetes Care. 2015 Oct;38(10):1852–7.
  7. Wukich DK, Hobizal KB, Brooks MM. Severity of Diabetic Foot Infection and Rate of Limb Salvage. Foot Ankle Int. 2013 Mar;34(3):351–8.
  8. Evans KK, Attinger CE, Al-Attar A, Salgado C, Chu CK, Mardini S, et al. The importance of limb preservation in the diabetic population. J Diabetes Complications. 2011 Jul;25(4):227–31.
  9. Czerniecki JM, Morgenroth DC. Metabolic energy expenditure of ambulation in lower extremity amputees: what have we learned and what are the next steps? Disabil Rehabil. 2017 Jan 16;39(2):143–51.
  10. Pinzur MS, Gold J, Schwartz D, Gross N. Energy demands for walking in dysvascular amputees as related to the level of amputation. Orthopedics. 1992 Sep;15(9):1033-1036.
  11. Chung S-R, Wong KL, Cheah AEJ. The lateral lesser toe fillet flap for diabetic foot soft tissue closure: surgical technique and case report. Diabetic Foot Ankle. 2014 Jan;5(1):25732.
  12. Janssen D, Adolfsson T, Mani M, Rodriguez-Lorenzo A. Use of a pedicled fillet foot flap for knee preservation in severe lower extremity trauma: A case report and literature review. Case Rep Plast Surg Hand Surg. 2015 Dec 23;2(3–4):73–6.

Bilateral Charcot neuroarthropathy, a challenge for diagnosis and treatment

by Nathalie Denecker1*, Dimitri Aerden2, Michel De Maeseneer3pdflrg

The Foot and Ankle Online Journal 9 (1): 6

Charcot neuroarthropathy is a devastating foot disorder whose differential diagnosis with infectious, bone or articular disease is difficult. We report a rare case of a woman with diabetes who developed bilateral Charcot neuroarthropathy after erysipelas of her left leg and subsequent trauma, which complicated diagnosis as well as efficient off-loading.

Key words: bilateral Charcot foot, diabetic foot, diabetic neuropathy, off-loading

ISSN 1941-6806
doi: 10.3827/faoj.2016.0901.0006

1,2 – UZ Brussel, Diabetic foot clinic, Laarbeeklaan, 101, 1090 Brussel, BELGIE
3 – UZ Brussel, Radiology department Laarbeeklaan, 101, 1090 Brussel, BELGIE
* – Correspondence: Nathalie Denecker nathalie.denecker@uzbrussel.be


Charcot neuroarthropathy (CN) of the foot is a rare but debilitating disorder that affects bones, joints and soft tissues and leads to significant deformity unless diagnosis is established early. We report a case of bilateral synchronous CN that proved particularly challenging because diagnosis was obfuscated 1) by bilateral symptomatology and 2) a preceding erysipelas. In addition, we had no prior experience in off-loading both limbs simultaneously.

Case report

A 58-year old woman with insulin dependent type 2 diabetes and lower limb neuropathy presented to the emergency department with fever and erythema of the left leg. The limb was erythematous and warm with a plantar neuropathic ulcer on the left hallux. Distal pulses were detected bilaterally. Blood sampling showed overt inflammation. The diagnosis of erysipelas was established with the toe ulcer as entry point. A wound smear revealed Pseudomonas aeruginosa for which intravenous antibiotics were administered for 8 days. She returned with increased oedema and pain of her leg two weeks later, although inflammatory blood parameters had normalised.

Ten days later inflammatory symptoms had persisted and spread to the contralateral foot and ankle: both feet now were swollen, red and warm, and some bruises from a recent trauma were detected. X-rays of both feet were normal. A bone scintigraphy with SPECT-CT (Single Photon Emission Computed Tomography) was suggestive for CN of both feet, with tracer uptake in the midfoot (Figure 1a) and small bony fragments on CT (Figure 1b). Hotspots over the 2nd metatarsal heads bilaterally raised the possibility of underlying osteomyelitis.

Bilateral immobilization with total contact casts (TCC) was deemed impracticable. Hence, the left foot was treated with a removable air-cushioned cast (Aircast®) but this required the patient to be hospitalized. Oedema of the tarsus and metatarsal bases shown on magnetic resonance imaging (MRI) confirmed bilateral CN (Figure 2a) but osteomyelitis of the 2nd metatarsal head was rejected by leucocyte scan with SPECT-CT. Transfer to a rehabilitation centre and regular ambulatory appointments to renew the TCC were initiated. Three months later clinical inflammatory signs and oedema of the midfoot on control MRI had decreased, although increased oedema was observed at the talar bone bilaterally (Figure 2b). Off-loading was continued with bilateral Aircast® walkers for another 3 months until orthopaedic shoes became available. Final ambulatory rehabilitation was satisfactory.

1a1b

Figure 1 (a) Bone scintigraphy shows tracer uptake in the midfoot and 2nd metatarsal heads bilaterally. (b) Irregular margins and bone fragments in the midfoot are seen on SPECT-CT.

Discussion

Charcot neuroarthropathy or Charcot foot is a devastating complication of neuropathy which is mostly seen as a rare complication of longstanding diabetes [1-5]. Men and women are equally affected [2,6]. Until recently, the prevailing hypothesis for pathogenesis was neurotraumatic or neurovascular [2,7,8]. Authors have observed however that CN is also associated with an enhanced inflammatory response, presumably triggered by minor trauma, prior infection, ulceration or foot surgery. Pro-inflammatory cytokines (TNF-α, IL-1ß) are released and lead to increased expression of receptor activator of nuclear factor-κB (RANK) ligand, thereby activating NF-κB (Nuclear Factor κB), a potent promotor of osteoclastic activity which promotes osteolysis and fractures [1,2,8,9].

The prevalence of CN is underestimated but affects less than 1% of all patients with diabetes [6,8-10]. Moreover, local inflammation is inhibited by limited arterial inflow, a frequent occurrence in patients prone to macrovascular disease [9]. Ipsilateral recurrence of CN is rare [10]. Over several years, contralateral CN may occur in 20% to 30% [6,7,11]. Off-loading of the index foot has been suggested as the initiating event that may develop CN at the contralateral foot [11].

2a2b

Figure 2 (a) MRI of the right foot initially shows bone marrow oedema of the tarsus and metatarsal bases. (b) Three months later oedema in the original regions has improved but is now more prominent in the talar bone.

Diagnosis of acute Charcot foot is primarily established clinically because no specific laboratory tests are available: a unilateral red, warm, swollen foot that is remarkably painless due to neuropathy. Differential diagnosis should be made with infection (cellulitis, osteomyelitis, arthritis, abscess), acute gout, deep venous thrombosis and trauma (sprain, fracture) [1-4,11,12]. Imaging techniques are helpful but X-rays lack sensitivity during the first weeks. The sensitivity of bone scintigraphy is superior and its low specificity is improved by SPECT-CT. MRI has diagnostic accuracy in the early stages and allows differentiation from osteomyelitis [1-3,11]. According to literature, the diagnosis of CN may be missed in 79% and delayed up to 29 weeks [11]. Unfortunately, early recognition of CN and prompt treatment is mandatory to prevent foot deformation.

Rapid immobilisation of the affected foot is paramount and accomplished best by TCC, the gold standard for off-loading [1,13]. A removable pneumatic walker achieves comparable off-loading but non-compliance remains a problem [4,10]. Immobilisation is advised until clinical signs have resolved and a temperature difference of <2°C between feet is recorded [1,9,14]. In general, this occurs after 3-12 months, with 6 months being most common [10,11,14]. Bisphosphonates which inhibit bone resorption have been suggested as adjunctive therapy but current data do not support their routine use [5].

Bilateral synchronous CN as reported in the presented case is not only an extremely rare occurrence, but also greatly complicates diagnosis and subsequent immobilisation/off-loading. To our knowledge, only one similar case has previously been reported: a man in which contralateral CN presumably was elicited two weeks after off-loading his index foot with a TCC [12]. In our case, a skin infection probably triggered CN on the index side which unfortunately also delayed diagnosis. On the contralateral side both the overloading of the right foot due to pain on the left side, or trauma may have been the trigger for CN. The number of radiological exams that had to be performed, and their conflicting findings demonstrate how difficult a diagnosis can be. Long-term immobilisation and off-loading of both limbs was extremely debilitating to our patient and justified hospitalisation in a rehabilitation centre.

In summary, diagnosis of acute Charcot foot is challenging, especially when triggered by prior infection or trauma. Bilateral CN, although extremely rare, further complicates the diagnosis as well as efficient off-loading and immobilisation.

References

  1. Rogers LC, Frykberg RG, Armstrong DG, Boulton AJM, Edmonds M, Van Ha et al. The Charcot Foot in Diabetes. Diabetes Care 2011; 34(9): 2123–2129. (PubMed)
  2. Gouveri E, Papanas N. Charcot osteoarthropathy in diabetes: A brief review with an emphasis on clinical practice. World J Diabetes 2011; 2(5): 59–65. (PubMed)
  3. Botek G, Anderson MA, Taylor R. Charcot neuroarthropathy: An often overlooked complication of diabetes. Cleve Clin J Med 2010; 77(9): 593-599. (PubMed)
  4. Pinzur MS. Current concepts review: Charcot arthropathy of the foot and ankle. Foot Ankle Int 2007; 28(8):952-9. (PubMed)
  5. Richard JL, Almasri M, Schuldiner S. Treatment of acute Charcot foot with bisphosphonates: a systematic review of the literature. Diabetologia 2012; 55: 1258–1264. (PubMed)
  6. Hartemann-Heurtier A, Van GH, Grimaldi A. The Charcot foot. Lancet 2002; 360: 1776-1779. (PubMed)
  7. Jeffcoate W, Lima J, Nobrega L. The Charcot foot. Diabet Med 2000; 17(4): 253-258. (PubMed)
  8. Molines L, Darmon P, Raccah D. Charcot’s foot: Newest findings on its pathophysiology, diagnosis and treatment. Diabetes Metab 2010; 36(4): 251–255. (PubMed)
  9. Jeffcoate WJ. Theories concerning the pathogenesis of the acute charcot foot suggest future therapy. Curr Diab Rep 2005; 5(6): 430-435. (PubMed)
  10. Christensen TM, Gade-Rasmussen B, Pedersen LW, Hommel E, Holstein PE, Svendsen OL. Duration of off-loading and recurrence rate in Charcot osteo-arthropathy treated with less restrictive regimen with removable walker. J Diabetes Complications 2012; 26(5): 430-434. (PubMed)
  11. Milne TE, Rogers JR, Kinnear EM, Martin HV, Lazzarini PA, Quinton TR et al. Developing an evidence-based clinical pathway for the assessment, diagnosis and management of acute Charcot Neuro-Arthropathy: a systematic review. J Foot Ankle Res 2013; 6(1): 30. (PubMed)
  12. Fauzi AA, Yang CT. Bilateral diabetic Charcot foot. Aust Fam Physician 2013; 42(1-2):55-56. (PubMed)
  13. Ramanujam CL, Facaros Z. An overview of conservative treatment options for diabetic Charcot foot neuroarthropathy. Diabet Foot Ankle 2011; 2:1-5. (PubMed)
  14. Moura-Neto A, Fernandes TD, Zantut-Wittmann DE, Trevisan RO, Sakaki MH, Santos ALG et al. Charcot foot: skin temperature as a good clinical parameter for predicting disease outcome. Diabetes Res Clin Pract 2012; 96(2): e11–14. (PubMed)