Tag Archives: external fixation

Correction of Traumatic Ankle Valgus and Procurvatum using the Taylor Spatial Frame: A Case Report

by Thurmond Lanier DPM, MPH , Erik Lilja DPM, FACFAS 

The Foot and Ankle Online Journal 4 (5): 3

Injuries about the ankle joint can have devastating consequences when left untreated or undertreated, and treatment is especially important in the pediatric population. Physeal injury may occur that can result in abnormal growth patterns. External fixation can be used to correct ankle and tibial deformities, and the Taylor Spatial Frame (TSF) can be used to more easily correct triplane deformities. A case study is presented to demonstrate the use of the TSF in correction of ankle valgus and tibial procurvatum.

Key words: Epiphysis, Ilizarov frame, External fixation, CORA

Accepted: April, 2011
Published: May, 2011

ISSN 1941-6806
doi: 10.3827/faoj.2011.0405.0003

Injuries about the ankle joint such as fractures, chronic ligamentous injuries, and osteochondral lesions can result in post-traumatic arthritis. These injuries are more devastating when they are left untreated or undertreated. When injuries of this nature happen in the pediatric population, special considerations must be taken to preserve physeal growth plates and prevent the occurrence of future growth disturbances. When a disturbance does occur at the epiphysis, depending how severe the deformity, surgical correction may be indicated. Internal fixation may be used to accomplish correction, but external fixation may be preferred if the deformity is severe which may result in soft tissue compromise if corrected acutely.

Ilizarov circular frames have had widespread use in the correction of angular deformities. [1] With more complex deformities (such as those in multiple planes), Ilizarov frames may be used but the application of hinges are needed and more complex pre-operative planning as well as more intricate post-operative manipulation is needed. With the advent of the Taylor Spatial Frame (TSF), deformities can be reduced in all three planes simultaneously. The TSF has two rings and six struts that are expandable. [2] The deformity parameters are measured by the surgeon and are introduced into the TSF software in which a prescription is printed. [3] We present a case report of a pediatric case where a TSF was utilized for correction of a multiplanar ankle deformity.

Case Report

A 14 year-old patient presented to clinic with complaints of right ankle pain. The patient related having a history of a right ankle fracture which happened 4 years prior. The patient states that he was making a jump on his quad and ended up catching the right foot on the top of the rear tire and felt a snap. The patient was diagnosed with an ankle fracture and was treated conservatively in a cast for approximately six weeks. The patient removed his own cast at that time and began weight bearing. The patient continued to have lateral ankle pain and noticed that his foot was in an abnormal position relative to his ankle. Radiographs were obtained 2 years after the initial injury which showed collapse of the lateral portion of the epiphysis and shortening with lateral displacement of the fibula with an increase in medial clear space. (Figs. 1A and 1B) This also resulted in valgus position of the ankle joint. The patient was given conservative treatment for approximately two years until his growth plates were closed and operative intervention was then initiated.


Figures 1A and 1B  Lateral pre-operative radiograph displaying tibial procurvatum and relatively narrow joint space. (A)  The anterior posterior (AP) and mortise pre-operative radiographs demonstrating significant valgus of the mortise and increased medial clear space. Also note decreased tibia-fibula overlap. (B)

Operative Technique/Post-operative care

The TSF consisted of two tibial rings connected by six struts. The proximal ring was applied to the tibia via two half pins. The half pins were applied perpendicular to the posterior crest of the tibia and confirmed with fluoroscopy. The distal ring was placed with two wires and a half pin and was placed distal to where the proposed osteotomy would be. The distal ring was placed in relative malalignment with the distal tibia so when the deformity was corrected the frame would be in a neutral position. An incision was then made along the anteromedial aspect of the tibia. Layered dissection was taken down to the tibia shaft and a through and through osteotomy was made with a sagittal saw. The osteotomy was made as distal in the tibia shaft as possible as the center of rotation of angulation (CORA) was located within the ankle joint. The CORA represents the apex of the deformity and in most cases is the optimal location to place the osteotomy.

If the CORA is located within a joint, generally the osteotomy is made proximal to the CORA within bone with good blood supply. A lateral incision was then made over the fibula with dissection taken down to the shaft. Utilizing a sagittal saw a transverse osteotomy was made. The final frame construction was made sure to be orthogonal to the tibia. (Fig. 2) Post-operatives radiographs were taken to ensure proper alignment of the frame. (Figs. 3 and 4) Adjustments were started approximately 10 days after surgery. Radiographs were taken on a weekly basis. The only complication that occurred was a pin tract infection which resolved with antibiotics. The frame was removed in 3 months when bony consolidation of the osteotomy was identified on radiographs. (Figs. 5 and 6)

Figure 2  Intra-operative image showing application of the Taylor Spatial Frame (TSF).

Figure 3  Immediate AP post-operative radiograph. Note distal ring with built-in deformity to match deformity at ankle joint.

Figure 4   Immediate lateral post-operative radiograph showing fibular osteotomy.

Figure 5  Final lateral post-operative radiograph showing healed osteotomy sites and decrease tibial procurvatum.

Figure 6  Final AP post-operative radiograph showing healed osteotomy sites with decrease in valgus position of the ankle.


The use of the TSF has been described in numerous cases in the literature. The frame has been utilized in accomplishing ankle arthrodesis in patients with and without ankle and tibial deformities. Thiryayi, et al., described ankle fusion using the TSF in 10 patients. [2] The patients stayed in the fixator for an average of 24 weeks.

All patients demonstrated bony union. They reported having 7 cases of superficial pin tract infections which were resolved with oral antibiotics. Tellisi, et al., describe applying a TSF for limb lengthening and ankle fusion simultaneously. [4] The authors applied the TSF for ankle fusion and then brought patients back to the operating room for tibial lengthening. The surgeons performed the tibial osteotomy just distal to the tibial tuberosity. The authors also performed a fibular osteotomy to prevent tethering and angular deformity at the tibial lengthening site. The authors had 53 ankle fusions in which 12 underwent simultaneous tibial lengthening. 84% went on to complete fusion with two patients having significant non-unions (these patients were smokers). The average time in the fixator was 8.4 months with all patients having completely healed osteotomy sites. No significant pin tract infections were reported.

A case study was reported by Mabit, et al., where a TSF was placed on a young girl with ankle varus that resulted from a malunited ankle fracture. [5] The authors chose to correct her deformity gradually with a TSF preassembled and with the tibial rings oriented 30 degrees in the coronal plane matching the deformity. A tibial osteotomy was performed and distraction took place on the fourth post-operative day. The patient stayed in the TSF for 2.5 months. The patient went on to successful healing.

Feldman, et al., describe using the TSF for tibial malunions and nonunions. They had 18 patients in their study that had a TSF applied. The average time in the frame was 18.5 weeks. All patients went on to successful healing except one who developed a varus deformity through the healing fracture in the tibia. Fifteen of the 18 patients returned to preinjury activities at last follow-up. [3] Matsubara, et al., describe application of a TSF for 3 patients due to ankle ankylosis. [6] All patients had limb length discrepancy and angulation deformity. The average time in the fixator was 216 days. All patients were able to walk normally with a plantigrade foot.


The TSF is a useful tool for the surgeon to correct complex multiplane deformities of the lower extremity. Pre-operative parameters combined with the computer software make the TSF a simpler system as compared to traditional external fixators. There are various studies in the literature that demonstrate the usefulness and ease of this technique. Our patient was able to adjust the frame with ease and deformity correction was more precise using the computer software.


1. Chaudhary M. Taylor spatial frame-software-controlled fixator for deformity correction – The early Indian experience. Indian J Orthop 2007 41: 169-174.
2. Thiryayi WA, Naqui Z, Khan SA. Use of the Taylor Spatial Frame in Compression arthrodesis of the ankle: A study of 10 cases. J Foot Ankle Surg 2010 49: 182-187.
3. Feldman DS, Shin SS, Madan S, Koval KJ. Correction of tibial malunion and nonunion with six-axis analysis deformity correction using the Taylor Spatial Frame. J Orthop Trauma 2003 17: 549-554.
4. Tellisi N, Fragomen TA, Ilizarov S, Rozbruch SR. Limb salvage reconstruction of the ankle with fusion and simultaneous tibial lengthening using Ilizarov/Taylor Spatial Frame. Hospital Special Surgery, 2008 4:32-42.
5. Mabit C, Pecout C, Arnaud JP. Ilizarov’s technique in correction of ankle malunion. J Orthop Trauma 1994 8: 520-523.
6. Matsubara H, Tsuchiya H, Takato K, Tomita K. Correction of ankle ankylosis with deformity using the Taylor Spatial Frame: A report of three cases. Foot Ankle Int 2007 28: 1290-1294.

Address correspondence to: Thurmond Lanier, DPM, MPH, Swedish Medical Center, 747 Broadway, Seattle, WA, 98122.

1  PGY 2, Swedish Medical Center, 747 Broadway, Seattle, WA, 98122
2  Attending physician, Swedish medical center, 747 Broadway, Seattle, WA, 98122, Private practice, 9501 5th Ave. NE, Seattle, WA, 98115.

© The Foot and Ankle Online Journal, 2011

Talar and Calcaneal Y-Osteotomy with Distraction Osteogenesis for the Correction of Rigid Equinus

by Sutpal Singh, DPM, FACFAS , Albert Kim, DPM 2, Timothy Dailey, DPM 3, Long Truong, DPM 4, Maria Mejia, DPM 5

The Foot and Ankle Online Journal 4 (4): 3

Types of equinus, surgical management for equinus involving the Y- talocalcaneal osteotomy supplementing an external fixation device is presented. A case report is introduced involving surgical correction of a 53 year old male who had a severe equinus flat top talus with mild varus secondary to clubfoot surgery. Treatment included surgical correction utilizing Steindler stripping, Achilles tendon lengthening, and a rather rare Y- osteotomy of the calcaneus and talus with the use of a multiplaner external fixator in an unconstrained system to correct the equinus and varus deformity. Slow distraction was performed in order to decrease the risks of having neurovascular injury, soft tissue injury, and shortening of the foot. After months of follow-up, there was good healing of the osteotomy sites and the patient had a plantigrade foot.

Key words: Clubfoot, Rigid Equinus, Flat top talus, Y-Osteotomy, External fixation, Distraction Osteogenesis, Ilizarov method.

Accepted: March, 2011
Published: April, 2011

ISSN 1941-6806
doi: 10.3827/faoj.2011.0404.0003

Ankle joint equinus can be divided into a three types; soft tissue, osseous and a combination of the two. [1] Soft tissue equinus alone can be easily repaired, but when multiple deformities occur such as clubfoot, it can complicate the treatment.

The etiology of ankle equinus can include trauma, diabetes mellitus, poliomyelitis, osteomyelitis, contracture from burns, neglected or relapsed clubfeet, prolonged immobilization in plantarflexion, as well as neuromuscular disease. [1,3,7]

Traditionally, correction has been managed through arthrodesis and extensive soft tissue release. Treatments for soft tissue ankle equinus include procedures such as splinting, tendo-Achilles lengthening, gastrocnemius recession, and rare deformities such as accessory soleus release. [10,13]  Neurovascular, soft tissue problems and shortening of the foot may occur with traditional techniques. Also, prior surgeries may make the surgical management of the foot deformities more difficult later in life.

An Ilizarov external fixator can be used to correct equinus and it can be applied in two ways; constrained and unconstrained. The constrained technique places the axis of rotation at a planned anatomical axis of the joint. [9]  The constrained technique can correct deformities within the joint unlike the unconstrained that keeps the natural axis of rotation. The unconstrained technique places the axis of rotation around the natural axes of the joint. [9] The unconstrained technique requires distraction of the ankle joint before an attempted correction.

The Ilizarov external fixator can be used to correct equinus without an osteotomy, only when the equinus is soft tissue in nature. Only correcting the soft tissue deformity with an Ilizarov frame has a high recurrence rate. [3]  When dealing with an osseous equinus an osteotomy must be performed and Ilizarov used the process called distraction osteogenesis to correct the deformity. [18] “Gradual distraction of the soft tissues and bones enables reshaping of the foot.” [8]  The Ilizarov technique can fix these deformities with minimal incisions. The downside to this is the patient has an external fixator for several months. During this time the patient may bear weight on the area which has an advantage over internal fixation. Another advantage is during osseous correction it can also correct for soft tissue deformities at the same time.

There are three main types of Ilizarov rearfoot osteotomies including the U, V and Y osteotomies. [9]  The Y- osteotomy is the least published of the three. The Y is an osteotomy through the neck of the talus and an osteotomy of the posterior calcaneus below and parallel to the subtalar joint making an apex in the anterior calcaneus and then an osteotomy plantarly thus creating the shape of a “Y”. [9]  The Y- osteotomy has the same implications as the V- osteotomy except it doesn’t elongate the foot as much. [9] The Y- osteotomy with external fixation allows small changes each day to allow the new bone to form and correct the deformity. This osteotomy allows correction of complicated equinus cases. Which osteotomy is chosen depends greatly on the surgeons’ experience.

Case Report

A 53 year old male was seen in the office due to severe pain around the sub right 4th and 5th metatarsals. The patient had an equinus deformity of the right lower extremity with varus deformity. (Figs.1A and 1B) His past surgical history was significant for club foot surgery when he was 4 years old, which still left him ambulating on the ball of his right foot. The rest of the history was unremarkable.


Figure 1A and 1B  Preoperative photo (A) and  radiograph (B) showing ankle equinus deformity.

Physical exam showed that he had scar tissue around the medial, lateral, and posterior heel on the right foot. The positioning of his right lower extremity included a tight contracted Achilles tendon that correlated with a rigid equinus deformity, varus of the foot with subtalar joint stiffness with no range of motion at the mid foot, rear foot and ankle. Also, there were contractures of all the digits. There was no leg length discrepancy noted and the length of the foot was within normal limits. The patient had difficulty wearing shoes and could only wear sandals. There was increased pain under the right 4th and 5th metatarsophalangeal joints due to the excessive pressure while ambulating secondary to the rigid equinus and inversion of the foot. This, in effect, was placing too much pressure on his 4th and 5th metatarsal heads.

The procedure that was performed included a Steindler stripping, an Achilles tendon lengthening, talar and calcaneal Y-osteotomies, plantar tenotomy of all five digits, and the application of an Ilizarov external fixator.

The patient was prepped and draped in the usual standard manner. No tourniquet was applied. A # 15 blade was used to perform a percutaneous tendon lengthening of the Achilles Tendon. The foot was only able to dorsiflex several degrees due to the severity of the deformity from negative 45 to negative 40 degrees. Along the plantar medial calcaneus a Steindler stripping was then performed. This helped release all the fascial and muscular contractions on the plantar foot from the calcaneus. A prophylactic tarsal tunnel release was also performed by transecting the laciniate ligament. Two tibial rings were then applied to the lower leg. One half-ring was applied to the calcaneus and one half-ring was applied to the distal foot. All wires were then tensioned appropriately. The calcaneal half-ring was attached to the posterior tibial ring. The distal foot half-ring was then connected to the anterior tibial ring.

The calcaneal ring was then connected to the distal foot half ring. All connections had distraction capability to correct the foot in three dimensions. Prior to any distraction, using flouroscan a small incision was made at the medial aspect of the talar neck. The incision was deepened to the subcutaneous tissue and then to the periosteum of the talus. A small osteotome was then used to perform a complete osteotomy of the talar neck. Along the lateral aspect of the calcaneus a small incision was made parallel and inferior to the subtalar joint. The incision was deepened to the subcutaneous level and then to the periosteum of the calcaneus. A small osteotome was used to perform a complete osteotomy of the calcaneus 1 cm posterior and inferior to the subtalar joint. Along the anterior aspect of the calcaneus a small incision was made 1 cm proximal to the calcaneal cuboid joint. The incision was deepened to the subcutaneous level and then down to the periosteum of the calcaneus. A small osteotome was inserted down to bone and rotated being careful not to transect the peroneal tendons or sural nerve. A complete osteotomy was then performed at the distal calcaneus. (Fig. 2)

Figure 2  Intra-operative  radiograph of the  Y- osteotomy.   The left side of the Y is the Talar neck osteotomy, the right side of the Y is the calcaneal osteotomy below the subtalar joint and the stem of the Y osteotomy is located at the distal calcaneus.

Note that a void was created while removing the osteotome at the stem of the osteotomy. This eventually healed well due to the vascular nature of the calcaneus. All surgical sites were irrigated with normal saline and bacitracin and sutured with 3-0 Prolene. Attention was then directed to all the plantar toes and plantar flexor tenotomies were then performed and smooth wires were then inserted and attached to the distal half ring. The surgical site was then dressed with Adaptic, gauze and Kerlex . (Figures 3,4,5A, 5B, and 6)

Figure 3  Initial frame placement at the time of the surgery.

Figure 4  Note the rod rotating the distal ring out of varus and dorsiflexing it.


Figure 5A and 5B  Note that the forefoot and rearfoot can be manipulated independent of each other.  Note the wires from the toes being attached to the forefoot half ring. (A)  The plantar view showing the percutaneous plantar tenotomies of all the toes with wires going into the metatarsals and attached to the foot half ring. (B)

Figure 6  The post-operative radiograph.

At one week, the following manipulations to the bones in the external fixator were initiated: 1) distraction of the calcaneus towards eversion and inferior displacement, 2) rotation of the distal foot towards eversion and dorsiflexion, 3) distraction of the forefoot from the rearfoot.

The patient was instructed to increase the movements by a total of 1 mm per day achieved by a ¼ turn of the distraction mechanism 4 times per day. The patient was taken back to the OR at week 3 (Fig. 7) and at week 8 (Fig. 8) for the addition of extra rods and bars for greater manipulation and a better line of pull. At week 12, there was good alignment of the foot in a plantigrade position and at week 20, the external fixator was removed (Fig. 9) At 6 months, the patient was ambulating in a custom made AFO. (Fig. 10)

Figure 7   More rods were applied for more distraction at 3 weeks after surgery.

Figure  8   At 8 weeks , the patient had more bars and rods added with frame manipulation.

Figure 9  At 5 months the frame was removed and the patient was placed in a below the knee cast.

Figure 10   At 6 months, the patient had his foot plantigrade and was full weight bearing in a custom made AFO.

Overall, the patient was able to ambulate with the heel on the ground with minimal pain; however, did not have much range of motion at the ankle or foot. All the pain under the lateral forefoot resolved. The patient was satisfied with his plantigrade foot and able to ambulate with a custom AFO.


There are multiple surgical procedures available for correction of acquired ankle equinus, soft tissue as well as bone procedures. [1,2,4] When this deformity becomes fixed it poses a challenge to many foot and ankle surgeons due to soft tissue contraction and bony adaption and requires a combination of soft tissue and bone procedures. [1,2,4] Flexible deformities can be treated with manipulation methods thus preventing surgery.

When manipulation methods don’t work then surgery is required. Surgical correction consisting of extensive soft tissue releases with and without arthrodesis for equinus deformity has been well described. [15] Different osteotomies with and without an external fixator have been described in literature for correction of complex foot deformities. [9,11,14,16,17,20]

Correcting deformities such as clubfoot become a challenge especially after failed surgeries due to stiffness of the soft tissues and residual deformities such as equinus. [16,17] There are several osteotomies and a few of the commonly discussed ones are the U (Scythe-shaped), V, and less commonly discussed Y- osteotomy. [16,17]

The scythe-shaped (U) osteotomy is a curved osteotomy that divides the foot into two sections. It starts posterior to the lateral malleolus and runs from 1-1.5 cm below the posterior subtalar joint, then penetrates the floor of the sinus tarsi and emerges at the talar neck. [9,11] This type of osteotomy allows for correction of equinus with a rigid tibio-talar joint. [9]

The V – osteotomy is a combination of oblique cuts that are angled at 60-70 degrees. [9] The osteotomy is performed along the posterior calcaneus and the anterior calcaneal-talar. This type of procedure is indicated for treatment of complex deformity of the hindfoot and the midfoot. [9,11,19,20] The V- osteotomy offers versatility when combined with an external fixator because it has the ability to preserve foot length and perform simultaneous tibial corrections. [20]

The Y – osteotomy is similar to the V – osteotomy in a sense that it allows one to apply differentiated correction between the hindfoot and the forefoot. The osteotomy results in a three ray star that is all 120 degrees apart. The osteotomy is first performed at the oblique posterior aspect of the calcaneus, then a vertical osteotomy of the calcaneus, and finally the calcaneal-talar ostetomy. [9] This type of procedure allows for the same correction as the V – osteotomy but with fewer complications. [9]

The hinges are positioned on the medial and lateral threaded rods of the calcaneal half ring. The equinus is corrected by lowering the calcaneus and raising the forefoot in relationship to the talar body. [9] Correction is achieved through the movement of the fragments of the osteotomy with the majority of correction of the calcaneal and talar equinus. [9,14] The Y – osteotomy does not cause any skeletal lengthening as with the scythe-shaped osteotomy, therefore it offers three advantages. [9] The advantages include faster consolidation because of less bone regeneration, skin alteration is easily contained, and prevention of calcaneocuboid diastasis is unnecessary. [9]

The Ilizarov method with external fixation was chosen for the correction after performing the osteotomy because it enables correction in all three orthogonal planes. [4,9,11,14,17] Using an external fixator is not only minimally invasive, but it also allows the surgeon to stage the treatment appropriately to manipulate the rate and direction of the correction. It can be used as either a constrained or unconstrained hinge system. In the constrained foot frame, forces applied to the foot are directed around the axis. [14] This technique is usually reserved for large joints. In the unconstrained system, joints of the ankle and the foot are used as the fulcrum points for correction and it is usually used with smaller joints or deformities with multiple joint axes. [14]

The Steindler stripping procedure is recommended for patient with significant contractures of the plantar aponeurosis and plantar musculature.[1] The abductor hallucis, flexor digitorum brevis, and abductor digiti quinti are released from the periosteum of the calcaneus. However, this procedure is limited in that it does not correct fixed deformities and only corrects in the sagittal plane. [1]

The complications associated with the use of an external fixator and any type of osteotomy includes tarsal tunnel syndrome, neurovascular symptoms, pin tract infection, flexor contractures, valgus drift, incomplete osteotomy, residual deformity, and recurrence of problem. [4,9,11,14,16,17,19,20]

Due to such complications, it has been recommended that a prophylactic tarsal tunnel release be performed to decrease the likelihood of nerve entrapment secondary to the correction and to minimize the risk of vascular injury. [16] There is a high incidence of nerve injury as a result of acute angular deformity correction. [20] If compressive symptoms of the tibial nerve are experienced during the correction, it can be addressed either by performing a secondary surgical decompression or by decreasing the rate of correction. [11,14] Pin tract infection and flexor contractures are usually secondary to prolonged fixator utilization. [19,20] Pin tract problem are related to skin motion and controlled with local pin site care. Pin tract infections are minor complications that occurs with any type of external fixator but respond very well to oral antibiotics and rarely lead to osteomyelitis requiring pin removal. [17,20] Premature consolidation of the osteotomy before full correction is reached is also not an uncommon complication. To avoid this problem, it is recommended to start distraction routinely on the third postoperative day. [16]

Despite such complications, the Ilizarov technique remains an effective and safe tool for complex lower limb reconstruction surgery. It allows corrections in all planes at a rate that can be tailored to the deformity without the constraints of traditional methods.

When looking back at the literature regarding the Y- osteotomy there is not much to be found. Our case presentation is unique that to our knowledge there are no other journal articles on which a y calcaneal osteotomy is used in conjunction with an Ilizarov distractor. Furthermore there is close to no literature regarding the Y- osteotomy. In the literature the main focus has been on correcting the structural equinus foot by using the V. [16,17] Also there has not been another study in which the y osteotomy is used in conjunction with the Ilizarov distractor. In our case study we found that the Y- osteotomy allows for correction of a severe deformity while minimizing neurovascular and soft tissue complications as well as avoiding excessive shortening of the foot as is many times encountered with traditional techniques.

Traditional methods although successful with certain patients they involve much more cut in the bone which can lead to excessive shortening and soft tissue complications. Our case report helps to illustrate a successful way in which a rigid equinus can be corrected by the use of an under researched osteotomy with gradual distraction of the structures in the foot. In our case the patient was satisfied with his plantigrade foot even though he did not have much range of motion at the ankle or foot. This view is supported by other studies in which patient satisfaction is achieved with improvement in appearance of the foot. [6,16,21]


In this case study, we presented a rigid equinus foot that was corrected with the use of a Y – osteotomy along with the use of Ilizarov methodology. There is not much literature about the usage of the Y – osteotomy even though it has three main advantages which are: faster consolidation, skin alterations are easier to contain, and there is less chance of calcaneal-cuboid diastasis. [1] Furthermore, the Y – osteotomy avoids excessive lengthening of the foot. Correction of severe foot deformities with the Ilizarov method is technically difficult but when used with the Y – osteotomy, differentiated correction between the hindfoot and forefoot can be applied. In the case study it was successfully shown that the Y – osteotomy allows for correction of a severe deformity while minimizing neurovascular and soft tissue complications as well as avoiding excessive shortening of the foot as is many times encountered with traditional techniques. The final result was a plantigrade foot. Thus, the Y – osteotomy through the talus and calcaneus with distraction osteogenesis using the Ilizarov methodolgy is an effective surgical procedure in correcting rigid equino-varus foot deformities.


1. Banks AS, Downey MS, Martin DE, Miller SE. McGlamry’s Comprehensive Textbook of Foot and Ankle Surgery. Philadelphia, Lippincott Williams & Wilkins, 2001.
2. Coughlin, Michael J, Roger A. Mann, Charles L. Saltzman. Surgery of the Foot and Ankle. Philadelphia, Mosby 2007.
3. Digiovanni CW, Holt S, Czerniecki JM, Ledoux WR, Sangeorzan BJ. Recurrence after correction of acquired ankle equinus deformity in children using Ilizarov Technique. Strategies Trauma Limb Reconstruction 3: 105-108, 2008.
4. Emara Khaled M, Allam Mohamed Farouk, ElSayed Mohamed Nabil MA, Ghafar Khaled Abd EL. Recurrence after correction of acquired ankle equinus deformity in children using Ilizarov technique. Strat Traum Limb Recon 3:105-108, 2008.
5. Easley, Mark E., Wiesel Sam. Operative Techniques In Foot and Ankle Surgery. Philadelphia, Lippincott Williams & Wilkins 2011.
6. Freedman JA, Watts H, Otsuka NY. The Ilizarov method for the treatment of resistant clubfoot: is it an effective solution? J Pediatr Orthop 26:432–437, 2006.
7. Guyton G, Saltzman C. The Diabetic foot. JBJS 83A: 1083-1096, 2001.
8. Ilizarov GA. Transosseous osteosynthesis. Berlin/Heidelberg: Springer-Verlag, 1992.
9. Kirienko Alexander, Villa Angelo, Calhoun Jason H. Ilizarov Technique for Complex Foot and Ankle Deformities. Marcel Dekker, Inc, 2004.
10. Kishta WE, Mansour EH, Ibrahim MM. The accessory soleus muscle as a cause of persistent equinus in clubfeet treated by the Ponseti method : A report of 16 cases. Acta Orthopaedica Belgica 76: 658-662, 2010.
11. Kocaoğlu M, Eralp L, Atalar AC, Bilen FE. Correction of complex foot deformities using the Ilizarov external fixator. J Foot Ankle Surg 41: 30-39, 2002.
12. Laughlin RT, Calhoun MD. Ring fixators for reconstruction of traumatic disorders of the foot and ankle. Orthop Clin North Am 287-294, 1995.
13. Lopez A, Kalish S, Mathew J, Willis FB. Reduction of ankle equinus contracture secondary to diabetes mellitus with dynamic splinting. Foot Ankle Online Journal. 3 (3):2, 2010.
14. Mendicino RW, Murphy L J, Maskill MP, Catanzariti AR, Harry P. Application of a constrained external fixator frame for treatment of a fixed equinus contracture. J Foot Ankle Surg 47: 468-475 , 2008.
15. Galli M , Cimolin V, Crivellini M, Albertini G. Gait analysis before and after gastrocnemius fascia lengthening in children with cerebral palsy. J Appl Biomaterials Biomechanics 3: 98-105, 2005.
16. Segev E, Ezra E, Yaniv M, Wientroub S, Hemo Y. V Osteotomy and Ilizarov technique for residual idiopathic or neurogenic clubfeet. J Orthopaedic Surg 16: 215-219, 2008.
17. Shalaby H, Hefny H. Correction of complex foot deformities using the V-osteotomy and the Ilizarov technique. Strat Traum Limb Recon 1: 21-30, 2007.
18. Spielberg Parratt Dheerendra Khan Jennings Marsh. Ilizarov principles of deformity correction. Annals of The Royal College of Surgeons of England 92: 101–105, 2010.
19. Gerhardt S, Vinay S, Bernhard ZE, Uitz C, Wolfgang L. Complex foot deformities associated with soft-tissue scarring in children. Journal Foot Ankle Surg 40: 42-49, 2001.
20. Theis JC, Simpson H, Kenwright J. Correction of complex lower limb deformities by the Ilizarov technique: An audit of complications. J Orthopaedic Surgery 8: 1448-1552, 2000.
21. Utukuri MM, Ramachandran M, Hartley J, Hill RA. Patient-based outcomes after Ilizarov surgery in resistant clubfeet. J Pediatr Orthop B 15:278–84, 2006.

Address correspondence to: Sutpal Singh, DPM, FACFAS, Chief Ilizarov Surgical Instructor at Doctors Hospital West Covina, Fellow of the American College of Foot and Ankle Surgeons, Private practice in Southern California.

1 Chief Ilizarov Surgical Instructor at Doctors Hospital West Covina, CA.  Fellow American College of Foot and Ankle Surgeons. Private practice in Southern California
2 PM&S 36, R3 (Foot and Ankle Medicine and Surgery) Doctors Hospital of West Covina.
3 PM&S, R2 (Foot and Ankle Medicine and Surgery) Doctors Hospital of West Covina.
4 PM&S, R1 (Foot and Ankle Medicine and Surgery) Doctors Hospital of West Covina.
5 PM&S, R1 (Foot and Ankle Medicine and Surgery) Doctors Hospital of West Covina.

© The Foot and Ankle Online Journal, 2011

Reconstructing Limb Deformities using the VCAM™ External Fixator: A series of 3 cases

by Michael P. DellaCorte, DPM, FACFAS , Panagiotis Panagakos, DPM ,
Tarika Singh, DPM , Howard Goldsmith, DPM, AACFAS

The Foot and Ankle Online Journal 4 (1): 2

External fixation was used almost exclusively for fracture management. It is also used for arthrodesis, management of lower extremity deformities such as Charcot neuroarthropathy, limb lengthening, osteotomy stabilization, osteomyelitis, nonunion or pseudoarthrosis. It has proven extremely useful in the treatment of a number of conditions because it can provide distraction, compression, stabilization and neutralization as needed. Traditional external fixators involve driving pins through the tibia and fibula. The VCAM™ is a unique below the ankle external fixator. The VCAM™ can avoid possible disruptions and complications that are often seen with traditional Ilizarov fixators. The indications for the VCAM™ external fixator are identical to the Ilizarov fixators, such as off-loading, fracture reduction and reconstructive procedures. In our institution, we have used the VCAM™ device to off-load ulcerations and correct limb deformities. In the cases presented in this paper the VCAM™ was used to off-load wounds secondary to Charcot arthropathy and transmetatarsal amputations, as well as to gradually correct a rearfoot deformity such as seen in a Chopart’s amputation. The VCAM™ can be constructed into an Ilizarov type frame or a hybrid frame which can be used to achieve gradual triplanar correction. We have seen good results using the VCAM™ for wound care and limb deformities and recommend this approach when tibia and fibula intervention is not necessary.

Key words: Limb deformity, Charcot foot, ulceration, VCAM™, wound, external fixation.

Accepted: December, 2010
Published: January, 2011

ISSN 1941-6806
doi: 10.3827/faoj.2011.0401.0002

External fixators have proven very versatile in treatment as they can be used with open, closed or limited open surgical techniques. They provide access to the involved limb for wound healing and dressing changes and can be designed to correct complex deformities such as Charcot joint. They allow for gradual, precise correction over the postoperative course rather than a single intra-operative correction by osteotomy or fusion.

Ring fixators are typically used to treat complex Charcot neuroarthropathy. [1] External fixators provide multiplanar correction including angulation, translation, rotation, stabilization, compression, distraction and neutralization while allowing for surrounding soft tissue adaptation; this also helps to minimize wound complications and vascular compromise that may result from overcorrection in a single-stage procedure. [2,4,5,6] In general, external fixators can be used to correct coexisting deformities separately, successively or simultaneously. [3]

The VCAM™ fixator allows for adjustment and alteration as needed during the post-operative period. Full immediate weight bearing postoperatively is also possible with the external fixator. [2] This is extremely important in Charcot reconstruction with concomitant ulcerations that require offloading. Additionally, external fixation is the only treatment option for Charcot with associated osteomyelitis or in Eichenholtz stage I and II, where internal fixation is contraindicated. [4]

There are two main types of fixators. The monolateral fixator which consists of threaded half-pins attached to a bar which allows for axial compression or distraction. The other main type is the ring fixator which was made popular by G.A. Ilizarov. The ring fixators use trans-osseous wires and pins placed under tension for bone fixation; they are more versatile and complex than the monolateral fixators. The hybrid fixator is a combination of these two main types and may be more appropriate for certain indications. [2,3]

Lower limb deformities secondary to trauma, diabetes or any other pathological cause can be devastating to patients and frustrate foot and ankle surgeons treating them. Charcot arthropathy is one of the limb deformities discussed in this paper that can lead to ulceration. Treatment of Charcot foot may require internal as well as external fixation. Ilizarov type fixators have been used for surgical reconstruction of this deformity. Surgery is indicated for treatment of Charcot arthropathy if chronic or recurrent ulcers are associated with the deformity, if the deformity is unstable and if there is an acute fracture in a neuropathic patient with good circulation. [1,2]

There is limited mention in the literature of external fixation devices that do not extend proximal to the ankle. The purpose of this paper is to introduce the VCAM™ external fixator and present its various uses and construct designs.

The VCAM™ has been available for nearly a decade. In our opinion it is an underutilized external fixator because it has not been previously reported in the literature which has lead to an ignorance of the device in the orthopaedic community.

It has mainly been used in locations where ankle privileges are not available to podiatrists. The VCAM™ consists of a leg portion with a boot construct similar to a CAM walker with Velcro straps lined along the leg sleeve, plastic upright Velcro extensions attached to posts, various size threaded rods, half rings, foot plates and a rocker bottom with rubber treads with Velcro straps. We believe this unique external fixator has many advantages over traditional Ilizarov frames. It reduces the number of pins or wires placed across the tibia and fibula, therefore decreasing pin site infections, calf edema does not become an issue, fractures of the tibia and fibula when inserting, removing and/or tensioning the wires and decrease in thermal necrosis of neurovascular and muscular structures in the leg. The VCAM™ cannot be used for limb lengthening procedures, ankle fractures, pilon fractures, or any other surgical procedure involving the tibia or fibula


When all ancillary pedal procedures are complete and the half rings and wires have been applied to the operative site and tensioned, the VCAM™ leg sleeve is first applied over cast-padding. Next, the plastic extensions are attached by velcro and are secured. Then three or four hole posts are secured to the plastic extensions to which various sized rods are attached spanning from the leg down to the foot. These rods are connected to the foot plate and half rings with the use of posts, if needed. Note that the foot plates and half rings are secured in place with nuts and bolts to the smooth olive transfixation wires during the surgical reconstruction. Lastly, the rubber rockerbottom foot attachment allows protection and partial weight bearing. Constructs are designed based on the pedal pathology present.

Once there is clinical and radiographic evidence of consolidation at the fusion site, or there is clinical correction of a specific limb deformity the external fixator may be removed. The frame is often removed after 8 to 12 weeks and the patient is fitted for a Charcot Restraint Orthotic Walker (CROW) and remains in this device for 6 months.

Thereafter, patients are fitted for ankle foot orthoses (AFO) and custom extra depth shoes with appropriate fillers if necessary.

Case Report 1

This diabetic male patient presented to the Emergency Department with an infected 2nd toe leading eventually to a proximal Chopart’s Amputation. The patient had multiple debridements and fasciotomies of the leg over a 6 month period. He developed a lateral ankle ulcer and an adducto-varus foot type as a result of muscle imbalances. (Figs. 1A and 1B)

Figure 1A and 1B Case 1: Lateral aspect of the lower extremity with adducto-varus deformity and ulceration over the fibular malleolus before VCAM™ application. (A)  A superior view of the lower extremity with adducto-varus deformity. (B)

He had the VCAM™ external fixator applied to offload the ulcer and to gradually correct the adducto-varus deformity. The pins were placed distally through the amputation site to create a more stable frame. He had an adjunctive Achilles tenotomy. Weekly adjustments consisted of tightening the lateral aspect of the frame and loosening the medial components to bring the foot perpendicular to the leg. (Figs. 2A, 2B and 2C) After six weeks of weekly adjustments clinical correction of the deformity was achieved and the lateral ulcer healed. The VCAM™ was then removed. (Figs. 3A and 3B) He was then placed in a CROW Walker to weight bear.

Figure 2A, 2B and 2C Case 1:  Day of VCAM™ application. (A)  1 week after the VCAM™ application with the first adjustment after VCAM™ application. (B)  4 weeks after VCAM™ application with the fourth adjustment. (C)

Figure 3A and 3B Case 1:  6 weeks after VCAM™ application and there is clinical correction of deformity.  The VCAM™ was then removed. (A) The lateral view shows clinical correction of deformity and healed ulceration. (B)

Even though the VCAM™ is primarily a below ankle frame it can be designed to imitate a Taylor Spatial™ external fixator, as it was for this case. A half ring was able to be applied above the ankle without any pins inserted into the leg and six struts were fashioned to help achieve gradual triplanar correction of the lower extremity deformity.

Case Report 2

A 60 year-old male with history of Diabetes Mellitus with peripheral neuropathy and ESRD, presented to wound care center with a chief complaint of chronic non-healing plantar ulcers of six months duration. The patient had a previous left foot trans-metatarsal amputation (TMA) with an ulcer on the distal plantar lateral aspect of the TMA site and a plantar heel ulcer. Local wound care with weekly debridements failed to heal the ulcers. The plantar heel ulcer measured 5cm x 6cm and probed to bone.

It was then decided to proceed with surgical debridement of the ulcer and VCAM™ application. On March 3rd, 2008 a percutaneous tendo-Achilles lengthening (TAL) and tenotomy of the anterior tibial tendon were performed to relieve forefoot pressure on the distal plantar lateral TMA site ulcer. The Versajet Hydrosurgery System™ (Smith & Nephew) was used to debride the plantar ulcers of all necrotic tissue and then application of Apligraf® (Organogenesis) skin substitute was applied to the heel ulcer. At this point, a VCAM™ external fixator was applied to offload the plantar ulcerations and help maintain angular correction after TAL and anterior tibialis tenotomy. The pins for the frame were thrown distally through the TMA site exiting posterior to the heel to help create a more stable construct. The VCAM™ in this case is a standard Ilizarov type frame and was primarily used to offload the ulcers. (Fig. 4A and 4B) The ulcers were progressing well and had decreased in size significantly until the patient tripped and fell while ambulating which ultimately led to several pin tract infections. (Figs. 5A and 5B) The causative organism of the pin site infections was MRSA. The patient was started on Zyvox® (Pfizer) and the VCAM™ fixator was removed on April 17, 2008.

Figure 4A and 4B Case 2:  Clinical appearance the day of VCAM™ application. (A) The lateral view 1 week after VCAM™ application. (B)

Figure 5A and 5B Case 2:  2weeks after VCAM™ application showing ulcer healing with associated pin tract infections. (A)  4 weeks after VCAM™ application with progressive closure of the ulcers.

The distal plantar ulcer healed before the fixator was removed and all wounds healed with continued off-loading after removal. Pin site infections are the most common complication with external fixators. In this case, patient selection was appropriate. He could ambulate without any significant issues prior to VCAM™ application that would deter a foot and ankle surgeon from applying an external fixator. In our opinion the result of the patient falling was accidental.

Case Report 3

A 51 year-old diabetic female with history of Hypertension, Hypercholesterolemia, Charcot Neuroarthropathy and a non-healing Wagner Grade 3 ulcer measuring 2.4 cm x 2.5 cm x 2.4 cm present for more than 1 year duration, was seen in the Wound Care Center. (Figs. 6A and 6B) Radiographs revealed a Charcot foot deformity with dislocation at the LisFranc and Chopart joints. (Figs. 7A and 7B) After 17 hyperbaric oxygen treatments helped to resolve cyanosis of the digits, it was decided that surgical intervention would be necessary to realign the midfoot and to offload the ulcer.

Figure 6A and 6B Case 3:  The Initial clinical appearance; plantar view of the foot. (A)  The Initial clinical appearance demonstrating the depth of the ulcer. (B)

Figure 7A and 7B Case 3:  The initial radiographic lateral view. (A) The initial radiographic dorsoplantar view. (B)

The patient had a wound debridement, left talar osteotomy, percutaneous Tendo-Achilles lengthening and VCAM™ application. This frame was constructed to offload the ulcer and to compress and realign the midfoot to the hindfoot. One half ring was placed on the dorsal aspect of the foot and another half ring placed posterior to the heel to aid with compression. Realignment of the dislocated joints is evident on the immediate post operative radiographs. The frame was adjusted on a weekly basis. The VCAM™ was successful in producing a more plantigrade foot and offloading the ulcer long enough for it to decrease greatly in size. The frame was removed after 8 weeks and the patient was subsequently put into an ankle foot orthosis. Conservative wound care continued for approximately 2 months until the ulcer healed successfully. (Figs. 8A, 8B and 8C)

Figure 8A, 8B and 8C Case 3: Day of VCAM™ application. (A)  The foot is placed in a more plantarflexory position to promote ulcer closure. (B)  The immediate post-op lateral radiograph. (C)


External fixators are now almost exclusively used for arthrodesis, management of lower extremity deformities such as Charcot neuroarthropathy, limb lengthening, osteotomy stabilization, osteomyelitis, nonunion or pseudoarthrosis. [1,2] In wound and ulcer management it provides offloading and potentiates healing. It has proven extremely useful in treatment of these conditions because it can provide distraction, compression, stabilization and neutralization as needed. [2]

There is limited mention in the literature of external fixation devices that do not extend proximal to the ankle. Herbst uses two types of external fixation devices for the treatment of Charcot Arthropathy. One is a foot frame and the other a tibiocalcaneal frame. He uses the foot frame for the correction of midfoot deformity. The main characteristics are a hindfoot ring and a forefoot ring in the coronal plane. The two rings have a spanning device between them to provide compression across the midfoot. [7] Malizos, et al., described an Ilizarov below the ankle circular frame to treat displaced calcaneal fractures. There are 2 rings both confined to the foot.

The proximal ring serves a stable ground through the talus and midfoot bones and supports the distal ring. The 2 rings are distracted to withstand the deforming forces of the Achilles tendon, the plantar musculature, aponeurosis and peroneal retinaculum. Ligamentotaxis can be used for reduction of fragments. Reduction of the shape and height of the calcaneus is easy with the use of gradual distraction. They concluded that rings attached to the distal tibia are not necessary.

Possible complications associated with the external fixator include: uncontrollable edema with drainage exiting at the pin tract sites, pin tract infections, pin loosening, pin irritation, pin/wire breakage, thermal necrosis, non-union, delayed union, malunion, osteomyelitis, joint contractures/subluxation, wound dehiscence, compartment syndrome, reflex sympathetic dystrophy and fracture after frame removal. [2] Many of these complications can be avoided with post-operative compliance and follow-up care. Edema can be alleviated by elevation and partial weight-bearing immediately post-op. Another potential complication is severe pain and damage due to pins or wires compromising muscles, tendons or neurovascular structures.

This complication is decreased with the use of the VCAM™, as no pins are passed through the leg. Major complications such as infection and wire breakage alter the postoperative course and often require removal of the external fixator. [9]

In the cases presented it is evident that the VCAM™ can be constructed in many configurations and therefore be used to treat a variety of lower limb deformities that could lead to ulcerations. In the first case the VCAMTM was applied to achieve gradual correction of a triplanar deformity. It was successful in doing so without the use of leg pins or wires. In the second case it was used a traditional Ilizarov frame to simply offload the extremity to assist in healing two plantar ulcers. In the third case it was again constructed as an Ilizarov type frame to offload a plantar ulcer and to provide compression of the midfoot to the hindfoot. In all three of these cases the VCAM™ was successful and proved to be a useful device to heal ulcerations and correct deformities without the use of leg pins or wires. One of the disadvantages of the VCAM™ as seen in the second case was the development of pin tract infections. This is the most common disadvantage with any external fixator, but the absence of leg pins in our opinion decreases the chance of pin tract infections with the VCAM™. More case studies and research should be explored with the VCAM™ in the areas of trauma especially Lisfranc fractures since it is a midfoot deformity and other lower limb deformities.

In conclusion we feel that the VCAM™ is an excellent modality when managing limb deformities that have lead to the development of ulcerations. It provides a means of realigning the foot in all necessary planes while simultaneously offloading ulcerations. The benefits greatly outweigh the risks associated with use of this device. We have seen good results using this device and recommend it for offloading ulcerations secondary to limb deformities. More case studies and research should be explored with the VCAM™ in the areas of trauma especially Lisfranc fractures since it is a midfoot deformity and other lower limb deformities.


1. Hamilton GA, Ford FA. External fixation of the foot and ankle Elective indications and techniques for external fixation in the midfoot. Clin Podiatr Med Surg 2003 20:45-63.
2. Baker MJ, Offutt SM. External fixation Indications and patient selection. Clin Podiatr Med Surg 2003;20:9-26.
3. Vito GR, Talarico LM, Kanuck DM. Use of external fixation to correct deformities of the lower leg. Clin Podiatr Med Surg 2003 20:119-157.
4. Cooper PS. Application of external fixators for management of Charcot deformities of the foot and ankle. Foot Ankle Clin N Am 2002 7:207-254.
5. Cooper PS. Application of external fixators for management of Charcot deformities of the foot and ankle. Semin Vasc Surg 2003 16: 67-78.
6. Jolly GP, Zgonis T, Polyzois V. External fixation in the Management of Charcot Neuroarthropathy. Clin Podiatr Med Surg 2003 20:741-756.
7. Herbst, S. External fixation of Charcot Arthropathy. Foot Ankle Clin N Am 2004 9:595-609.
8. Malizos KN, Bargiotas K, Papatheodorou L, Dimitroulias A, Karachalios T. The below-the-ankle circular frame: A new technique for the treatment of displaced calcaneal fractures. J Foot and Ankle Surg 2005 45(5):295-299.
9. Bevilacqua NJ, Rogers LC. Surgical management of Charcot midfoot deformities. Clin Podiatr Med Surg 200825:81-94.

Send correspondence to: Michael P. DellaCorte, DPM, FACFAS, Director of Podiatric Medical and Surgery Program at NorthShore Forest Hills LIJ; 5901 69th street, Maspeth, NY 11378. (718) 639-3338

1 Director of Podiatric Medical and Surgery Program at NorthShore Forest Hills LIJ; 5901 69th street, Maspeth, NY 11378.
2 PM&S 36 Resident; Hahnemann University Hospital.
3 PM&S 36 Resident; Hahnemann University Hospital.
4 Private Practice New York, NY.

© The Foot and Ankle Online Journal, 2011

May-Hegglin and other Platelet Dysfunctions as Complications to Compartment Syndrome: A case report

by Jason R. Miller, FACFAS, FAPWCA1, Peter Moyer, DPM2

The Foot & Ankle Journal 1 (9): 1

Compartment syndrome is a well known surgical emergency encountered by physicians on trauma call. When compounded by platelet dysfunction, the management of a compartment syndrome becomes exponentially more difficult for the surgeon. The following case describes a twenty-four year old male who sustained multiple comminuted tarsal and metatarsal fractures after a crush injury that was further complicated by an existing platelet dysfunction known as May-Hegglin anomaly (MHA). This article reviews May-Hegglin and other rare hematological conditions that often obscure otherwise straightforward surgical cases.

Key words: May-Hegglin, MHA, compartment syndrome, external fixation, foot fractures

This is an Open Access article distributed under the terms of the Creative Commons Attribution License.  It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ©The Foot & Ankle Journal (www.faoj.org)

Accepted: August, 2008
Published: September, 2008

ISSN 1941-6806
doi: 10.3827/faoj.2008.0109.0001

May-Hegglin anomaly (MHA) is a familial disorder that is a rare type of autosomal dominant platelet disorder. From 2000-2005, only 85 families with MHA were reported. [6] It is associated with thrombocytopenia with varying degrees of purpura, bleeding, giant platelets, and cytoplasmic inclusion bodies that resemble Döhle bodies in the granulocytes (neutrophils, eosinophils, monocytes). [4,6] In these patients, neutrophil and platelet function is considered to be normal. Thrombocytopenia occurs in almost all patients and severe bleeding is rare but has been reported.

These patients may have a range of symptoms from asymptomatic to recurrent epistaxis, gingival bleeding, easily bruising to menorrhagia. MHA has not been associated with higher rates of infection. [4]

In 1909, German physician May described a young female patient who had leukocytic inclusions, who was asymptomatic. [6] In 1945, Swiss doctor Hegglin described a father and his two sons who had a triad of thrombocytopenia, giant platelets, and leukocytic inclusions. [6]

These patients have a mutation of the MYH9 gene, encoding non-muscle myosin heavy chain IIA, present in chromosomal region 22q12-13. [4,6] This mutation results in disordered production of non-muscle myosin heavy-chain type IIA.

The result is macrothrombocytopenia, secondary to defective megakaryocyte maturation and fragmentation. Other associated syndromes are Sebastian, Fechtner, or Epstein syndromes. Differential diagnosis associated with thrombocytopenia and large platelets include Alport syndrome, Bernard-Soulier syndrome, Montreal platelet syndrome, immune thrombocytopenia, and gray-platelet syndrome. [6] The differential diagnosis for leukocytic inclusions includes septicemia, myeloproliferative disorders, and pregnancy.

A case report describes a twenty-four year old male who sustained multiple comminuted tarsal and metatarsal fractures after a crush injury that was further complicated by an existing platelet dysfunction known as May-Hegglin anomaly (MHA).

Case Report

A twenty-four year old deaf man was transported from a local hospital to our Level 1 trauma center for evaluation. He was at work when a steel industrial loading dock door came crashing down and landed across his left foot. (Fig. 1)

Figure 1 Initial presentation after crush injury of the left foot. 

Initial evaluation in the trauma bay was significant for left foot swelling, pain, and mottled skin. His sensory function was compromised while gross motor function remained intact. He presented with stable vital signs.

His past medical history was positive for the May-Hegglin anomaly. He reported living with his parents, denied allergies, and had an otherwise unremarkable review of systems. A full physical exam was normal with the exception of his left lower extremity.

The lower extremity exam was positive for: diminished pulses, exquisite pain on palpation of the mid-foot area, pain with range of motion of digits 1,2,3 and 4, decreased temperature, color changes, and swelling. Arterial line pressure monitoring revealed compartment pressures between 75 mmHg and 100 mmHg in the foot, therefore the operating room was called and prepared for emergent surgery.

Plain film and CT scan revealed the following fractures: comminuted intra-articular fracture of the calcaneus, comminuted fractures of the navicular, cuboid, proximal portions of the cuneiforms and fractures at the base of the second and third metatarsals. (Figs. 2,3)

Figure 2 Radiograph reveals first and second metatarsal crush fracture. 

Figure 3  Sagittal CT view of crush injury.  Displaced metatarsal, calcaneal, and cuneiform fractures are evident. 

Stat labs revealed the following abnormalities: WBC 4.9, HgB 8.6, HCT 25.9 and platelets were 39,000mm3. He was then typed and crossed for surgery.

Surgical Procedure

In the operating room, general anesthesia was administered and an emergent fasciotomy was preformed following typical sterile preparation. His left foot was noted to be severely cyanotic, mottled, and cool to touch. An 8-10 cm medial incision was made to the level of the deep fascia.

After the deep fascia was penetrated via blunt dissection, copious amounts of dark, non-coagulated blood flowed from the incision site. (Fig. 4)

Figure 4  Surgical exploration shows dark, non-coagulated blood and hematoma associated with the compartment syndrome. 

Both the medial and plantar compartments were explored through this incision. Approximately one to two minutes after initial incision was made, the hallux changed from a mottled, blanched, cyanotic color to a healthy pink hue with appropriate capillary refill time. A second incision was then made between the shafts of the second and third metatarsals. Blunt dissections in to the deep fascia revealed additional copious amounts of dark blood that was evacuated from the compartment. A third incision was placed between the fourth and fifth metatarsals, and again this compartment was relieved of congestion. Within five minutes after initial incision, the entire foot was pink and warm with a dramatic decrease in the swelling. Further evaluation noted that the rear-foot remained mottled and cyanotic. At that point a fourth incision was made anterior to the Achilles tendon into the deep fascia, and approximately 5 cc of dark blood was evacuated from the calcaneal compartment. The incisions were flushed and packed with saline soaked nu-gauze packing. Attention was then paid to the medial aspect of the calcaneus where a closed reduction of the sustentacular fragment was performed under fluoroscopy.

An external fixator device was placed in triangular fashion under fluoroscopy to maintain proper alignment of the destabilized midfoot and forefoot fractures.

Post-operatively, a posterior splint with a mild compressive dressing was applied and CBC was collected. Medical and hematology consults were activated, neurovascular evaluations were ordered every two hours, cefazolin 1g every 8 hours was started, and repeat radiographs and CT scans were performed.

On post-operative day number one (POD #1), hematology recommended transfusions of both platelets and packed red blood cells prior to the surgical procedure scheduled for POD #5. While they recommend the use of SCD’s, compression stockings, and out of bed to chair three times per day, they discouraged the use of heparin or enoxaparin for DVT prophylaxis. Hematology also recommended that in monitoring the patient for active bleeding, the hemoglobin, hematocrit and platelet count should be drawn every 12 hours and to consider desmopression (DDAVP) if the labs worsened.

On POD #4, he was transfused with four units of platelets, two units of packed red blood cells, and was given prophylactic diphenhydramine.

The patient tolerated the transfusion well with no evidence of reaction. On POD # 5, he was taken back to the operating room for a successful wash out, minor debridement and primary delayed closure. The patient was discharged on POD #6 after two normal CBC evaluations.

His uneventful postoperative course was interrupted on his second office visit when it was noticed that there was some displacement at the comminuted first metatarsal-cuneiform joint. He was taken back to the operating room for a possible fusion or re-manipulation/stabilization procedure. Intra-operatively, the joint was easily manipulated back into place, and small Steinman pins were introduced for stability. Additionally, the sustentacular fragment of the calcaneal fracture was definitively fixated with 4.0mm cannulated screw fixation under fluoroscopy by percutaneous technique. The fixation pins and external fixator were removed six weeks later and he has since returned to regular employment approximately 8 months following this injury. He reports no residual deformity or pain and is able to ambulate freely in regular shoegear. (Fig. 5)

Figure 5 Patient post reduction with functional left foot and no residual pain or deformity.


It is important to note that platelets play a central role in normal hemostasis and thrombosis. Platelets originate from pluripotent stem cells that undergo differentiation to the megakaryoblast and then to platelets. Normal platelet counts are between 150,000 to 300,000mm3, with thrombocytopenia being defined as a platelet count less than 100,000mm3. Spontaneous bleeding typically becomes evident after counts drop below 20,000mm3 (spontaneous head bleeds < 5,000mm3). [6]

In the circulating form, platelets appear as a smooth discs enclosed within a plasma membrane. This membrane contains a number of receptor glycoproteins that are responsible for platelet function. Within the platelet are two specific types of granules.

The first, alpha granules contain fibrinogen, fibronectin, factors V and VIII, platelet factor 4 and platelet-derived growth factor and transforming growth factor beta. The second type of granule is for non-metabolic pool adenine nucleotides (ADP & ATP), ionized calcium, histamine, serotonin, and epinephrine.6 When a vessel wall is damaged, platelets undergo three reactions: (1) adhesion and shape change, (2) secretion, and (3) aggregation collectively referred to as platelet activation. [4] (Fig. 6)

From May-Hegglin Anomaly, eMedicine, 2008.

Figure 6 2000x blood smear of a MHA patient demonstrating a typical giant platelet with ill defined granulation.  A normal sized platelet is also seen here.  The cytoplasmic inclusion body represents a Dohle body.


A cell blood count is essential in starting a workup in these patients. The platelet count is decreased, usually between 40,000-80,000mm3. The platelets are enlarged up to 15mm3 in diameter, with normal morphology. [4] Evaluation at the electron microscopy level reveals normal cell organelles with an increased amount of disorganized microtubuli.

The Wright-stained peripheral blood smear shows cytoplasmic inclusion bodies, most dominant in the neutrophils, but some are present in the eosinphils, monocytes, and basophils.

The inclusions are up to 5µm in size, they are spindle shaped, pale, blue-staining bodies that consist of ribosomes, endoplasmic reticulum, and microfilaments. [4] The inclusions are similar to Döhle bodies and are found in the periphery of the cytoplasm. [4] Bleeding time is typically prolonged in concordance with the degree of thrombocytopenia.

Since patients with MHA do not have significant bleeding problems, treatment should be based on clinical evaluation, laboratory evaluation and following recommendations from a hematologist pre- and post operatively. Though it is rare for a MHA patient to develop severe bleeding intra- and post operatively, the skilled foot and ankle surgeon should be aware of the risk of bleeding requiring transfusions. [5]

Desmopressin acetate (DDAVP), is a synthetic vasopressin analogue that has been used peri-operatively in patients with MHA. It is an altered form of vasopressin in which deamination of hemicysteine at position 1 and substitution of D-arginine for L-arginine at position 8 has occurred. [2] Desmopressin binds to the V2 receptor in renal collecting ducts, increasing water resorption. It also stimulates release of factor VIII from endothelial cells due to stimulation of the V1a receptor. [2] This change in stereochemistry eliminates vasopressor (V1) receptor agonist activity and enhances the antidiuretic (V2) receptor agonist action and prolongs duration of action from 2-6 hours to 6-24 hours. [2]

Desmopressin stimulates the endothelial release of factor VIII and von Willebrand factor into the plasma (V2 receptor effect).

After a slow infusion of 0.3mcg/kg, plasma concentrations of factor VIII and von Willebrand factor is 2-4x greater. [2]  Although it can be unpredictable, desmopressin has been shown to shorten bleeding time in a variety of platelet dysfunctional diseases.

DDAVP has become the drug of choice for prevention and treatment of bleeding in patients with mild hemophilia A and von Willebrand’s disease because of the increase in factor VIII and von Willebrand factor, but its mechanism in platelet disorders is still one of debate. [5]

Sehbai, et al., reported a case where 34-year old woman with known MHA underwent a craniotomy secondary to an intractable seizure disorder since childhood. [5] After an extensive family history, past medical history of the patient, and extensive workup which included; magnetic resonance imaging (MRI) of the brain, positron emission tomography (PET) scan, and 24 hour video EEG, the woman underwent craniotomy and resection of the temporal lobe foci of seizure activity. She was admitted one day prior to surgery and transfused with 6 units of platelets, and one hour before surgery was given DDAVP. Platelets were on standby if needed intra or post operatively. Her postoperative course was uneventful except for mild hyponatremia secondary to the DDAVP. [5]

Chabane, et al., reported a 24 year old female that was diagnosed with severe thrombocytopenia after giving birth. She was later diagnosed with MHA. She later went on to have a second and third child via cesarean section, and she did not receive platelets for either. The third child was affected by the MHA with a platelet count of 49,000mm3 as well as inclusion bodies on blood smear. [1]

Matzdorff, et al., reported on a patient with Fechtner syndrome that underwent a tonsillectomy and was given DDAVP pre-operatively. [3]

The patient was a 24 year old woman with a past medical history of thrombocytopenia and bruised easily in childhood. She had been diagnosed with Sebastian platelet syndrome, had also noted a impairment with her hearing as well as mild hematuria. After a detailed family history it was noted that some relatives had thrombocytopenia and hearing impairment. At the time, a blood smear was obtained and evaluated with electron-microscope, which confirmed that the inclusions were consistent with Fechtner syndrome. The woman underwent extensive laboratory evaluation: modified Ivy bleeding test, platelet aggregation studies with ADP, collagen, and ristocentin, and standard coagulation test. The patient also had a bone marrow biopsy. The pertinent test in this case was the bleeding test which was greater than thirty minutes, normal being 5-8 minutes. [3] The test was repeated after DDAVP was given, and her bleeding time normalized to 7 minutes 30 seconds, and her von Willebrand factor (her base line was above average) antigen had increased from 150% to 282%. On the day of surgery the women received DDAVP 0.4 µg/kg over 30 minutes 1 hour before the start time, and the surgery went uneventful. [3]


May-Hegglin is a rare platelet disorder associated with macrothrombocytopenia, leukocyte inclusions, deafness and nephritis. Patients may experience easy bruising, recurrent epistaxis, gingival bleeding, menorrhagia, and excessive bleeding associated with surgical procedures. A patient that presents with MHA and an un-witnessed fall should get a CT scan to rule out intracranial hemorrhage and internal bleeding. Patients that present with MHA should be evaluated by a hematologist to recommend DDAVP and platelet transfusions when necessary. In this case, MHA likely played a compounding role in the rapid development of the foot compartment syndrome encountered and could have certainly compounded the post-operative course.

This case demonstrates the need for a multi-disciplinary approach to patients exhibiting May Hegglin anomaly and expeditious surgical intervention when this rare patient population experiences a traumatic event. Additionally, it demonstrates the need to take a thorough history to reveal rare disorders, like this one, in an elective surgery population. A lack of proper treatment in patients with rare platelet disorders can certainly lead to devastating complications. It is our sincere hope that this article will serve to guide the foot and ankle surgeon to appropriately recognize and treat complicating disease processes when they present.


1. Chabane H, Gallais Y, Pathier D, Tchernia G, Gaussem P. Delivery management in a woman with thrombocytopenia of the May-Hegglin anomaly type. Eur J Obstet Gynecol and Reproduction Bio 99:124-25, 2001.
2. Mahdy A.M., Webster N.R. Perioperative systemic haemostatic agents. British J Anaesthesia 93(6):842-58, 2004.
3. Matzdorff AC, White JG, Malzahn K, Greinacher A. Perioperative management of a patient with Fechtner syndrome. Ann Hematol 80:436-439, 2001.
4. Noris P, Spedini P, Belletti S, Magrini U, Balduini C. Thrombocytopenia, giant platelets, and leukocyte inclusion bodies (May-Hegglin anomaly): clinical and laboratory findings. Am J Med 104:355-60, 1998.
5. Sehbai A, Abraham J, Brown V. Perioperative management of a patient with May-Hegglin anomaly requiring craniotomy. Am J Hematol 79:303-08, 2005.
6. Shafer FE. May-Hegglin Anomaly. eMed J [online], 2003.

Address correspondence to: Jason R. Miller, FACFAS, FAPWCA
Chief, Foot and Ankle Surgery, Pennsylvania Orthopaedic Center
Adjunct Associate Professor, Dept. of Surgery, TUSPM
Office: 215-644-6900 , FAX: 215-644-7160
Email: jrmiller71@pol.net

1Chief, Foot and Ankle Surgery, PA Orthopaedic Center. Adjunct Associate Professor, Dept. of Surgery, TUSPM, Philadelphia, Pa. 19107.
2PGY-4, Foot and Ankle Surgery, Temple University Hospital, Philadelphia, PA, 19140.

© The Foot & Ankle Journal, 2008