Tag Archives: heel pain

Calcaneal Intraosseous Lipoma treated with External Fixation: A case report and review of the literature

by James Losito, DPM1, Victor L. Herrera, DPM2, Riquel Gonzalez, DPM3, Thomas Merrill, DPM4

The Foot and Ankle Online Journal 5 (8): 1

A case report is presented of an intraosseous lipoma. Diagnosis was made with the help of Magnetic Resonance Imaging and histopathologic analysis, after which the patient was treated by means of curettage and packing with bone graft substitute. Surgical, histologic features and a staging classification for intraosseous lipoma are presented in this case report. This article also discusses the use of external fixation in a patient with high risk of calcaneal fracture and to promote early weight bearing and early recovery. Although calcaneal intraosseous lipoma accounts for a small portion of cases in the huge differential diagnosis chart for foot pain such as plantar fasciitis, retrocalcaneal bursitis, gout and stress fracture, it should be kept in mind as a possible diagnosis in cases of unresolved pain to the heel.

Key Words: Intraosseous lipoma, external fixation, heel pain, bone tumor.

Accepted: July, 2012

Published: August, 2012

ISSN 1941-6806
doi: 10.3827/faoj.2012.0508.0001


Intraosseous lipomas are rare benign bone tumors. This benign neoplasm has been reported to occur in the calcaneus as well as the proximal femur [1,6,7]. In the past, the relative absence of symptoms and radiographic similarity to a bone cyst has accounted for under diagnosis of intraosseous lipoma [2,3]. Intraosseous lipomas are derived from mature lipocytes mostly seen at the metaphysis of the long bones in men [5,6]. Foot and heel pain are the common symptoms of calcaneal intraosseous lipoma [5].

Non-surgical options such as NSAIDs, cold compression, use of non-weight bearing devices such as cane, use of silicone sole plate and preventive measures for pathological fractures are the most commonly used treatment modalities for this condition. Surgery is indicated in the presence of pain resistant to conservative treatment methods, impending or pathological fractures and when a histopathological differential diagnosis is required for aneurismal bone cyst, giant cell tumor, pseudo cyst formation or unicameral bone cyst. Although surgical treatment with curettage and autogenous bone grafting has been reported as a treatment choice, only small case series have been reported thus far [10]. In this study, we present one calcaneal intraosseous lipoma in a patient treated with curettage, autogenous bone grafting and Ilizarov external fixator.

Case Report

A 23 year-old male presents with the complaint of a dull, aching pain in his right heel of 2 years of duration. The pain was noted to increase after strenuous walking, long time of standing or other rigorous activities involving the right foot. The pain has been increasing steadily over the 3-4 months period. Patient stated the pain is persistent and worse at the end of the day. The pain is ranked (7 out of 10) on pain scale with 0 no pain, and 10 severe pain. There is associated swelling observed of the right foot.

 

Figures 1A and 1B Lateral plain x-rays (A) and antero-posterior views (B) with well-circumscribed bone lesion.

On gross examination, the patient walked with an antalgic gait. There is a small soft tissue palpable fluent mass on the right medial arch below the medial malleolus compatible with a possible superficial soft tissue lipoma. No scars, sinuses or venous prominences overlying the affected area, and the right ankle and subtalar joint motions were normal.

There is pain on palpation to the right heel and ankle. There is no past medical history that would increase the likelihood of bone infarction, such as corticosteroid use, infection, previous irradiation, lipid storage disease, collagen-vascular disease, or lympho-proliferative disorder.

Diagnosis

Plain radiographs revealed the presence of a well-circumscribed radio-mixed lesion with a thin sclerotic rim, interspersed with trabeculations in the antero-inferior portion of the left calcaneus underlying the subtalar joint. (Figs.1A and 1B) A preoperative magnetic resonance imaging (MRI) scan of the Right foot reveals the presence of a 2.3 x 2.0 cm circumscribed mass to the neck and body of the calcaneus. Predominant fat signal is seen on all pulse sequences. There is an eccentric component of fluid signal within the lateral aspect of the mass (Figs. 2A, 2B, 2C and 2D). The appearance of the mass is compatible with an intraosseous lipoma. There is prominent fatty tissue seen in the plantar, medial aspect of the right hindfoot most likely represents a prominent lobule of subcutaneous fat. It is at this point that the surgical option was discuses with the patient and he agreed to undergo surgical approach of his condition.

   

Figures 2A, 2B, 2C and 2D T1/T2 sagittal images shows fluid signal within the lateral aspect of the mass. (A and B) T1/T2 coronal images with well demarcated mass in the calcaneus. (C and D)

Surgical Approach

Based on the clinical and diagnostic image findings, intraosseous lipoma is diagnosed and operative decompression of the cyst is subsequently undertaken. Prior to the operation, the lesion is localized fluoroscopically and its localization is marked on the skin. Under tourniquet control, a straight lateral skin incision is performed over the lesion and the periosteum is incised longitudinally. The lesion and a portion of the adjacent normal tissue were exposed at one end of the lesion using a 1cm×1 cm rectangular cortical window. The cortex overlying the cyst is exposed on the inferior and lateral aspects. Using an oscillating saw and osteotome the cortex is opened and the lesion is totally curetted out with angled curettes through the cortical window.

As the cyst is decorticated, a greasy-yellow intraosseous lipoma is identified and evacuated from the osseous cavity. The soft tissue contents of the intraosseous cyst were removed along with the greasy fluid and the entire specimen is sent for histopathologic diagnosis. The cavity of the calcaneus is lavaged with normal saline before cancellous allograft bone is used to pack the cavity. After filling the cavity, the wound is closed in anatomic layers and a sterile dressing applied, followed by application of an Ilizarov ring external fixator for the initial postoperative period to allow for weight-bearing ambulation (Figs. 3A and 3B). Postoperative radiographs show the orientation of the external fixator to allow for early amputation after surgery (Figs. 4A and 4B).

 

Figures 3A and 3B Ring External Fixation system applied after the excised the bone tumor.

 

Figures 4A and 4B Lateral and A-P views of Post-Op X-Rays evaluation.

Subsequent histopathologic analysis reveals fragments of bone which include a few fragments of necrotic bone and fibroadipose tissue which shows foci of fat necrosis and necrosis of other soft tissue-types. The morphology suggests a possible fracture site or tendon avulsion. There is no evidence of neoplasm. These findings are consistent with the diagnosis of intraosseous lipoma. The patient’s heel pain subsided almost immediately after the operation, with the exception of surgical wound pain, which subsided in normal fashion.

A postoperative magnetic resonance imaging (MRI) scan of the right] foot is done 3 months after surgery once the fixator is removed. This reveals the resection of the previously described intra-osseous fatty mass in the neck and body of the calcaneus. Intermediate signal intensity tissue now fills this region of the calcaneus. There is no calcaneal fracture identified (Figs. 5A, 5B, 5C and 5D).

   

Figures 5A, 5B, 5C and 5D MRI shows T1/T2 sagittal views. (A and B) T1/T2 axial views of 12weeks MRI follow up evaluation shows bone graft uptake and reduced size of the bone cavity without fluid signal. (C and D)

Two weeks following suture removal, the patient is mobilized with instructions for partial weight bearing in the following 3 weeks, followed thereafter by weight bearing as tolerated. Clinical and radiological examinations are performed on the first postoperative day, at 6weeks, at 12weeks and every other month thereafter, until there is radiological confirmation of graft consolidation (Figs. 6A, 6B, 6C and 6D).

   

Figures 6A, 6B, 6C and 6D Clinical examinations at 12weeks post-op, without External Fixation. There is now good and adequate ankle range of motion.

Discussion

Milgram’s classification system is used for staging the lesions: In stage 1, the lesion is a solid lipoma composed of viable fat cells; in stage 2, part of the lesion is necrotized, forming focal calcification; and in stage 3, most of the tumor tissue has died, with variable degrees of cyst formation, calcification, and reactive new bone formation [19].

Histopathologic analysis of our (specimen) reveals fragments of bone which include a few fragments of necrotic bone and fibroadipose tissue showing foci of fat necrosis and necrosis of other soft tissue-types. The morphology suggests a possible fracture site or tendon avulsion. There is no evidence of neoplasm. These findings were consistent with the diagnosis of stage 2 intraosseous l intraosseous.

The need for surgical treatment is controversial. Curettage with bone grafting is the treatment of choice when surgical intervention is needed. Most lipomas, however, can be managed conservatively. Some surgeons feel that in asymptomatic cases with no signs of an impending pathologic fracture or suspicion of malignancy that a non-operative treatment with clinical and radiological follow-up is indicated. Malignant transformation is rare. While some surgeons think that biopsy is unnecessary because radiological features are characteristic, others believe that the lesion must be diagnosed histologically. However, reports stating that biopsy is required usually predate the common and efficient use of MRI, when an accurate radiological diagnosis was almost impossible.

We believe that pain alone is not an indication for surgical intervention or any other invasive treatment, including biopsy. The cause of pain in the patient with intraosseous lipomas is unclear, but it may be mechanical due to expansile remodeling of bone. It may be related to the ischemic changes that frequently accompany these lesions. It is also possible that the pain is referable from nearby joint disease and that the an intraosseous lesion is incidentally discovered. It is reported that symptoms may recur after surgical treatment or resolve spontaneously on conservative treatment, thus suggesting that many intraosseous lipomas are incidental findings and that patients may have another, unidentified cause of symptoms. Microtrabecular fracture in areas of weakened bone following episodes of minor trauma may be one cause of pain. Areas of diffuse increased signal were observed on MRI within the lipoma in some series, which may represent a stress response.

Asymptomatic intraosseous lipomas of the calcaneus should not require surgical intervention, since the tumor always occurred in the region of Ward’s triangle, which is a non weight-bearing region. In fact, in healthy individuals it is a region with bone paucity. A pathological fracture seems to be unlikely and has not been previously reported in the calcaneus.

Small cysts that are not located in the pressure-bearing trabecular area of the calcaneus are usually asymptomatic and can be treated conservatively. A “critical-size cyst” has been defined as an intraosseous lipoma extending the full breadth of the calcaneus laterally to medially in the coronal plane, and occupying at least 30% of the length of the calcaneus anteroposterior. Since the presence of a pathological fracture through a calcaneal cyst makes the operative procedure more complex and healing less predictable, the authors believe that large symptomatic calcaneal cysts should be managed surgically to reduce morbidity.

The decision to operate on a calcaneal cyst should be based on its size and location, the provisional diagnosis, associated symptoms, and the activity level and health of the patient. Although intraosseous lipoma is a benign lesion, Milgram [19] described four cases of intraosseous lipoma that underwent malignant transformation. Liposarcoma and malignant fibrous histiocytoma have also been found adjacent to benign lipomas.

Treatment of intraosseous lipomas is still controversial. Hirata, et al.[30], suggested that surgical treatment is not necessary owing to the potential for spontaneous regression and very low rate of malignant transformation. However, according to Weinfeld, et al.[21], curettage and grafting is the best choice of treatment. Schneider stated that the need for surgical treatment relies on the risk of malignant transformation [23]. Bertram reported a 33% rate of accidental diagnosis among 54 patients and surgery was only required when the patient was clinically symptomatic [24].

Gonzalez’s conclusion was similar to Bertram and stated that the majority of calcaneal intraosseous lipomas are seen in Ward’s triangle [10]. According to Mollin, et al.[28], curettage and grafting is a good choice for permanent treatment and can be performed if the patient is symptomatic. In the present case report, we operated on a symptomatic patient. He was resistant to conservative treatment for the previous 3 to 6 months. He underwent surgery due to the pain, incapacity to perform any sport activity and a suspicion for risk of pathological fracture due to his athletic ability.

Our patient started weight bearing just after surgery with an external fixator. He recovered with full benefit after nine months, and increased his sport activities without any complaint. Since intraosseous lipoma is an uncommon bone tumor, there is a need to familiarize physicians with the radiographic and MRI features of this lesion for the correct diagnosis and treatment.

References

1.  Kapukaya A, Subasi M, Dabak N, Ozkul E. Osseous lipoma: eleven new cases and review of the literature. Acta Orthop Belg 2006 72: 603-614. [PubMed]
2.  Radl R, Leithner A, Machacek F, Cetin E, Koehler W, Koppany B, Dominkus M, Windhager R. Intraosseous lipoma: retrospective analysis of 29 patients. Int Orthop 2004 28: 374-378. [PubMed]
3.  Campbell RS, Grainger AJ, Mangham DC, Beggs I, Teh J, Davies AM. Intraosseous lipoma: report of 35 new cases and a review of the literature. Skeletal Radiol 2003 32: 209-222. [PubMed]
4.  Reig-Boix V, Guinot-Tormo J, Risent-Martinez F, Aparisi-Rodriguez F, Ferrer-Jimenez R. Computed tomography of intraosseous lipoma of os calcis. Clin Orthop Relat Res 1987 (221): 286-291. [PubMed]
5.  Yildiz HY, Altinok D, Saglik Y. Bilateral calcaneal intraosseous lipoma: a case report. Foot Ankle Int 2002 23: 60-63.  [PubMed]
6.  Buckley SL, Burkus JK. Intraosseous lipoma of the ilium. A case report. Clin Orthop Relat Res 1988 (228): 297-301. [PubMed]
7.  Arslan G, Karaali K, Cubuk M, Senol U, Lüleci E. Intraosseous lipoma of the frontal bone. A case report. Acta Radiol  2000 41: 320-321. [PubMed]
8.  Kapukaya A, Subasi M, Dabak N, Ozkul E. Osseous lipoma: eleven new cases and review of the literature. Acta Orthop Belg 2006 72: 603-614. [PubMed]
9.  Chow LT, Lee KC. Intraosseous lipoma. A clinicopathologic study of nine cases. Am J Surg Pathol 1992 16: 401-410. [PubMed]
10.  Gonzalez JV, Stuck RM, Streit N. Intraosseous lipoma of the calcaneus: a clinicopathologic study of three cases. J Foot Ankle Surg 1997 36: 306-310. [PubMed]
11.  Propeck T, Bullard MA, Lin J, Doi K, Martel W. Radiologic-pathologic correlation of intraosseous lipomas. AJR Am J Roentgenol2000 175: 673-678.  [PubMed]
12.  Kamekura S, Nakamura K, Oda H, Inokuchi K, Iijima T, Ishida T. Involuted intraosseous lipoma of the sacrum showing high signal intensity on T1-weighted magnetic resonance imaging (MRI). J Orthop Sci 2001 6:183-186. [PubMed]
13.  Levin MF, Vellet AD, Munk PL, McLean CA. Intraosseous lipoma of the distal femur: MRI appearance. Skeletal Radiol 1996 25: 82-84.  [PubMed]
14.  Blacksin MF, Ende N, Benevenia J. Magnetic resonance imaging of intraosseous lipomas: a radiologic-pathologic correlation. Skeletal Radiol1995 24: 37-41. [PubMed]
15.  Rosenblatt EM, Mollin J, Abdelwahab IF. Bilateral calcaneal intraosseous lipomas: a case report. Mt Sinai J Med 1990
57: 174-176. [PubMed]
16.  Ketyer S, Brownstein S, Cholankeril  J.  CT diagnosis of intraosseous lipoma of the calcaneus. J Comput Assist Tomogr 1983 7: 546-547. [PubMed]
17.  Kozlowski K, Welshman R. What is it? Intraosseous lipoma in a 13-year-old boy. Br J Radiol 1991 64: 855-856. [PubMed]
18.  Lagier R. Case report 128. Skeletal Radiol 1980 5: 267-269, 1980. [PubMed]
19.  Milgram JW. Intraosseous lipomas. A clinicopathologic study of 66 cases. Clin Orthop 1988 231: 277-230. [PubMed]
20.  Poussa M, Holmstrom T. Intraosseous lipoma of the calcaneus. Report of a case and a short review of the literature.  Acta Orthop Scand 1976 47: 570-574. [PubMed]
21.  Weinfeld GD, Yu GV, Good JJ. Intraosseous lipoma of the calcaneus: a review and report of four cases. J Foot Ankle Surg 2002 41: 398-411.  [PubMed]
22.  Schneider O, Mischo J, Puschel W. Intraosseous lipoma of the calcaneus. Chirurg 1994 65: 74-76. [PubMed]
23.  Bertram C, Popken F and Rutt J. Intraosseous lipoma of the calcaneus. Congen Arch Surg 2001 386: 313-317. [PubMed]
24.  Langenbecks, Tejero A, Arenas AJ and Sola R. Bilateral intraosseous lipoma of the calcaneus. A case report. Acta Orthop Belg 1999 65: 525-527.  [PubMed]
25.  Rosenblatt EM, Mollin J and Abdelwahab IF. Bilateral calcaneal intraosseous lipomas: a case report. Mt Sinai J Med 1990 57: 174-176.  [PubMed]
26.  Ramos A, Castello J, Sartoris DJ, Greenway GD, Resnick D, Haghighi P. Osseous  lipoma: CT appearance. Radiology  1985 157: 615-619. [PubMed]
27.  Bruni L. The “cockade” image: a diagnostic sign of calcaneum intraosseous lipoma. Rays 1986 11: 51-54.  [PubMed]
28.  Reig-Boix V, Guinot-Tormo J, Risent-Martinez F, Aparisi-Rodriguez F, Ferrer-Jimenez R. Computed tomography  of intraosseous lipoma of os calcis. Clin Orthop 1987 221:286-291. [PubMed]
29.  Hirata M, Kusuzaki K and Hirasawa Y. Eleven cases of intraosseous lipoma of the calcaneus. Anticancer Res 2001 21:  4099-4103. [PubMed]


Address correspondence to: Victor Herrera, DPM email: herreragioco@bellsouth.net

1Diplomate, American Board of Podiatric Surgery, American Academy Podiatric Sports Medicine.
2Senior Resident at Barry University/ Mercy Hospital, Miami, Florida
3Resident at Barry University/ Mercy Hospital, Miami, Florida
4Diplomate, American Board of Podiatric Surgery.

© The Foot and Ankle Online Journal, 2012

A Prospective Randomized Trial Using Four Treatment Modalities for the Treatment of Plantar Fasciitis

by Gerald T. Kuwada, DPM, NMD

The Foot and Ankle Online Journal 4 (8): 1

Introduction: A prospective randomized study was conducted to determine the efficacy of subjective pain reduction in patients with plantar fasciitis using four treatment modalities.
Methods: One hundred patients (62 females and 38 males) were randomly assigned into four groups (n = 25) to receive arch supports, ultrasound treatments, injection or orthotics.
Results: The ultrasound group had the highest average pain reduction of 3.97 after treatment and the highest number of patients who had pain relief after treatment at 81% or 21/25. Orthotics had the next highest average pain reduction followed by local Marcaine/Triamcinolone injection and arch supports. The orthotic group had more patients who had no pain after using the devices than any of the groups.
Conclusions: No single treatment modality provided complete heel pain relief after treatment. Combining modalities will likely help improve plantar fasciitis than just one modality alone. This study also implies that some patients will require more than just one treatment modality to eliminate the symptoms of plantar fasciitis and that each modality usually decreased heel pain in most patients.

Key words: Heel pain, plantar fasciitis.

Accepted: July, 2011
Published: August, 2011

ISSN 1941-6806
doi: 10.3827/faoj.2011.0408.0001


One of the common foot problems in our society today is plantar fasciitis or plantar fasciopathy. One etiology that appears to be associated with this condition is obesity. Unfortunately, Americans are the heaviest people in the world and the obese American population is increasing at an alarming rate according to the Center of Disease Control (CDC). [1,2]

The obesity issue is epidemic in America resulting in a myriad of preventable diseases like diabetes, cardiovascular disease, and cancer resulting often in premature death and contributing to the most costliest health care system in the world at plus 2 trillion dollars annually. [3] The escalating cost of our health care system is a tremendous burden to our society already paying two trillion dollars for the Iraq and Afghanistan wars. Other etiologies for heel pain include trauma, arthritides, overuse injury, foot type, gait abnormalities, masses and tumors. In some cases the etiology is multifactorial. [4]

For the obese patient attempting to lose weight by exercise and caloric restriction, having plantar fasciitis makes the situation almost impossible to lose weight. The podiatric physician is faced with a challenging task of determining a viable treatment plan that gets the obese patient exercising with minimal to no pain.

Fortunately, there are many treatment modalities which may be viable for our obese patients as well as others. Ultrasound treatment is non invasive, easy to apply and comfortable for the patient. The high frequency sound stimulates the local tissues and increases the blood flow to the area alleviating inflammation. [4] Prefabricated and custom orthotics is another treatment recommendation. Studies have shown no significant difference between the orthotics and both have shown to consistently reduce heel pain. [4,5] Injection therapy is another useful modality that has been used to reduce inflammation in plantar fasciitis. In one study Triamcinolone with Lidocaine proved to be the most effective injection compared to 3 other types of medication and technique types. [6] For short term treatment low dye strapping has been found to be effective reducing plantar fascial pain. [7]

As clinicians we observe patients with rigid pes cavus and hyperpronated feet with plantar fasciitis. A study by Zammet and Payne showed that foot orthotics altered rearfoot functioning significantly but couldn’t correlate this to symptom reduction for plantar fasciitis patients. [8] In another study, a combination of treatments was found to reduce heel pain. The study showed that for at least 12 weeks temporary custom orthotics and stretching reduced heel pain in patients. [9] Medial arch supports reduced heel pain compared to low dye strapping in another study. Both of these treatment modalities were coupled with 9 ultrasound sessions in combination with 3 weeks of calf muscle stretching. [10] A retrospective study reviewed low dose radiotherapy on 273 patients with plantar fasciitis. They found that there was reduction in heel pain especially in patients 50 years or younger. They could not explain why this occurred but recommended this treatment modality for patients 50 years old or younger in acute cases of plantar fasciitis. [11]

Acupuncture and acupoint PC 7 significantly reduced heel pain compared to acupoint LI 4 which is considered to have analgesic properties. There were 27 patients receiving acupuncture to PC 7 and 25 patients in LI 4 patients. Each patient received 5 treatments for 2 weeks. [12] Low frequency electrical stimulation was paired with orthotics and stretching versus patients receiving just orthotics and stretching. The results revealed no significant difference between the 2 groups. However, both patient groups had reduction in heel pain after treatments. [13] Other non-surgical modalities include the use of radiotherapy, Botox injections, extra-corporeal shockwave therapy, platelet plasma injection and dynamic splinting all demonstrating effective heel pain reduction. [14-18]

This study is unique because it compares one modality against another avoiding a combination of treatments seen in many studies. While combining treatments may be necessary for recalcitrant plantar fasciitis it is unclear which treatment is really reducing heel pain. By isolating each modality, which one will provide the highest pain reduction in patients with plantar fasciitis? This prospective randomized study examines four common treatment modalities: arch support, injection, orthotics and ultrasound for the treatment of plantar fasciitis.

Methods

There were 100 patients diagnosed with plantar fasciitis randomly selected by the research assistant to receive one of 4 treatment modalities: ultrasound, functional rigid orthotics, over the counter arch supports, and injection. Each participant reviewed and signed consent form regarding this study. There were 25 patients in each treatment group. Each patient rated their pre treatment subjective pain rating based on a 0-10 scale. Zero equals no pain and 10 is the most severe pain the patient has ever experienced. After one month of treatment the patients pain rating was recorded for every patient in each group.

The ultrasound group received 6 treatments of 5 minutes to the painful heel at a cycle of 1.5 over a 2 week period. The arch support group were instructed to purchase an over the counter arch support to fit their feet. The injection group received one injection of .5ccs of Triamcinolone and 1cc of .5% plain Marcaine into the painful heel. The orthotic group was casted using the Root, et al., method and a biomechanical examination was also performed on each patient. [19] The positive casts and biomechanical measurements were sent to a professional orthotic laboratory for fabrication and the orthotic sent to our office for dispensation. The patient’s sex, height, weight and age were recorded. The groups BMI or body mass index average was calculated for each group. The average group height, weight and age were also calculated. The average subjective pain rating was calculated. The number of patients with 0/10 pain rating after treatment was recorded for each group. The number of patients whose subjective pain was reduced after treatment in each group was determined. The average pain rating reduction for each group was calculated by the pre-treatment group average pain and subtracted by the post treatment average pain rating for each group.

Results

There were 68 females and 32 males in this study. The ultrasound group had the highest average pain reduction of 3.97 after treatment and the highest number of patients who had less pain after treatment at 81% or 21/25.

The ultrasound group also had the lowest BMI average of 30.20. The orthotic group had the second highest subjective pain reduction average after treatment with 2.92. They had the third highest pain reduction patients with 64% or 17/25. The orthotics group had the highest number of patients who had no pain after treatment at 32% or 8/25. The ultrasound group had the second highest number with 20% or 5/25 after treatment. The orthotic group had the second lowest BMI average with 30.3. The injection group had the third highest pain reduction average after treatment with 2.74. The injection group had the second highest number of patients who improved after treatment with 72% 18/25. They had the second highest BMI average with 32. There were 7% of 2/25 patients who got complete pain relief after injection. The arch support group had the highest average BMI of 32.67. The arch support group had the lowest number of patients with no pain after treatment at 5% or 1/25. There were 9/25 or 35% patients who improved after treatment with arch supports. There were 10 patients who weighed over 300 lbs. Eight of 10 were female and the 2 were males. One male weighed 173 kg. (380 lbs.)

Table 1  Treatment group results.  Total subjects (n) = 100,  Female to male ratio = 62:38.  AVG. HT=average height (meters),  AVG WT = average weight (kilograms)  GRP=group, BMI= Body mass index.

Discussion

Based on the results of this study no one treatment provided complete heel pain relief after treatment. Ultrasound group had the overall highest number of patients who had less pain after treatment at 81% with injection second at 72% and orthotic group at 64%. The arch support had the lowest number with 35%.

Orthotic treatment had the highest number of patients at 32% who reported no pain after treatment. Whereas, the arch support group had only one patient rate 0/10 pain after treatment. This study implies that some patients will require more than just one treatment modality to eliminate the symptoms of plantar fasciitis. Surprisingly, an over the counter arch support provided some relief in 32% of the patients in the arch support group. Despite its non- specificity it was still helpful for some patients. Each of the treatment groups average BMI was over 30 indicating that most of the patients were overweight or obese. This study corroborates weight is an important factor in the etiology and treatment of this common foot diagnosis. In 1980 the author reported on a retrospective study of complete fascial release and overall results and complications. [20] There were no patients who weighed over 136 kg. (300 lbs.) in that patient population. The female to male ratio was 2:1 as in this study. The overall patient BMI was less than 30 for the patients who participated in the 1980 study. The CDC regards obesity a national health issue. Furthermore, the number one cause of death in women and men is now myocardial infarction linked to obesity. In this study there were 4 times more women than men ( 8 women to 2 men ) that weighed over 136 kg. (300 lbs.) Trying to lose weight by diet and exercise will be difficult for patients with plantar fasciitis. It will be a greater challenge for those who are over 136 kg. (300 lbs.)

Most of the treatments considered in this study are safe and effective in reducing heel pain. However, extra-articular corticosteroid injections has been implicated in adverse reactions including one death from necrotizing fasciitis, injection site cellulitis, atrophy of the fat pad, and tendon rupture. [21] Kim, et al., reported on a 2.4% incidence of plantar fascial rupture after receiving an average of 2.67 injections. [22] The injections consisted of .5ccs of dexamethasone plus .5ccs of Triamcinolone, and .5ccs of Xylocaine mixed with .5ccs of Marcaine. Thus far, there have been no reported cases of severe complications from Botox® injections and platelet plasma injections.

The author begins treatment for most patients with plantar fasciitis using ultrasound treatment, and arch supports initially. If there is residual heel pain, an injection is added to the treatment regimen. If there is still recalcitrant heel pain, orthotics is recommended. In about 87% of the patients diagnosed with plantar fasciitis there is heel pain reduction. Thirteen percent don’t improve or worsen after exhaustive conservative treatment and 90% of these patients proceed with complete fascial release with a 98% success rate. This is over 35 years of clinical experience and observation.

This study is unique because only one treatment modality was administered to each patient in their respective groups. Many of the studies used multiple treatment modalities with the treatment being investigated to determine if there was significant pain reduction to plantar fasciitis patients. The combining of treatments may show pain reduction but we cannot ascertain which treatment helped more than the others. The authors study clearly demonstrated that each modality decreased heel pain usually in most patients.

References

1. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among U.S adults 1999-2008. JAMA 2010 303: 235-241.
2. CDC REPORT for 2010. National Center for Chronic Disease Prevention and Health Promotion, CDC: Freedman, D.S on Obesity 2010, 73-78.
3. WHO Report 2010. WHO 2010 Geneva, Switzerland.
4. Healey K. Chen K. Plantar fasciitis: current diagnostic modalities and treatments. Clin Pod Med Surg 2010 7(3): 396-380.
5. Landorf KB, Keenan AM, Herbert RD. Effectiveness of different types of foot orthoses for the treatment of plantar fasciitis. JAPMA 2004 94: 542-549.
6. Baldassin V, Gomes CR, Beraldo PS. Effectiveness of prefabricated and customized foot orthoses made from low cost foam for noncomplicated plantar fasciitis: a randomized controlled trial. Arch Phys Med Rehab 2009 90: 701-706.
7. Kalaci A, Cakici H, Hapa O, Yanat N, Dogamaci Y, Sevinc TT. Treatment of plantar fasciitis using four different local injection modalities: A randomized, prospective clinical trial. JAPMA 2009 99: 108-113.
8. Zammet GV. Payne CB. Relationship between positive clinical outcomes of foot orthotic treatment and changes in rearfoot kinematics. JAPMA 2007 97: 207-212.
9. Drake M, Bittenbender G, Boyles RE. The short term effects of treating plantar fasciitis with a temporary custom foot orthosis and stretching. J Orthop Sports Phys Ther 2011 41: 221-231.
10. El Salam MS, Elhafz YN. Low-dye taping versus medial arch support in managing pain and pain related disability in patients with plantar fasciitis. Foot Ankle Spec 2011 4: 86-91.
11. Osborne HR, Allison GT, Hanna C. Treatment of plantar fasciitis by low dye taping an iontophoresis: Short term results of a double blinded, randomized placebo controlled clinical train of Dexamethasone and Acetic acid. BJSM 2006 40: 545-549.
12. Zhang SP, Yip TP, Li QS. Acupuncture treatment for plantar fasciitis: A randomized controlled trial with six months follow-up. Evid Based Complement Alternat Med 2009: 23.
13. Stratton M, McPoil TG, Cornwall MW, Patrick K. Use of low frequency electrical stimulation for the treatment of plantar fasciitis. JAPMA 2009 99: 481-488.
14. Hajtmanova E, Kinclova I, Kostkova L, Hajtman A, Pec M. Low dose radiotherapy in the treatment of plantar fasciitis. Klin Onkol 2010 23: 104-110.
15. Rawicki B, Sheean G, Fung VS, Goldsmith S, Morgan C, Novak I. Cerebral Palsy Institute. Botulinum toxin assessment, intervention and aftercare for pediatric and adult niche indications including pain: international consensus statement. Eur J Neurol 2010 Suppl 2: 122-134.
16. Metzner G, Dohnalek C, Agner E. High energy extracorporeal Shock Wave Therapy for the Treatment of Chronic plantar fasciitis. Foot Ankle Int 2010 31: 790-796.
17. Peerbooms JC, van Laar W, Faber F, Schuller HM, van der Hoeven H, Gosens T. Use of platelet rich plasma to treat plantar fasciitis: design of multi centre randomized controlled trial. BMC Musculoskeletal Disorders 2010 13:11: 69.
18. Sheridan L, Lopez A, Perez A, John MM, Willis FB, Shanmugam R. Plantar fasciopathy treated with dynamic splinting. A randomized controlled trial. JAPMA 2010 10:161-165.
19. Root ML, Orien WP, Weed JH. Normal and Abnormal Function of the Foot. Clinical Biomechanics Corp Los Angeles, 1977.
20. Kuwada GT, Gormley J. Retrospective ananlysis of calcaneal spur removal and complete fascial release for the treatment of chronic heel pain. JFS 1992 11: 166-169.
21. Brinks A, Koes BW, Volkers AC, Verhaar JA, Biema-Zeinstra SM. Adverse effects of extra-articular corticosteroid injections: a systemic review. BMC Musculoskeletal Disorders 2010 11:206.
22. Kim C, Cashollar MR, Mendicino RW, Catanzariti AR, Fuge L. Incidence of plantar fascia ruptures following corticosteroid injection. Foot Ankle Spec 2010 3: 335-337.


Address correspondence to: Gerald T. Kuwada DPM, NMD. 275 SW 41st street, Renton, WA 98057.
E-mail: drgeraldkuwada@qwestoffice.net
Office phone: 425-251-9174
Office fax: 425-251-0758

1  Private practice, 275 SW 41st street, Renton, WA 98057.

© The Foot and Ankle Online Journal, 2011

Plantar Fibromatosis: A case report

by Samik Banerjee, MS, MRSC1 , Milan Muhammad, MS2, Chinmoy Nath, MS3, Dilip Kumar Pal, MS4

The Foot and Ankle Online Journal 2 (12): 3

We report the case of a 30 year-old Indian female with no family history or cytogenetic abnormality who presented with a nodular fibrotic thickening of the right plantar fascia. She underwent a subtotal plantar fasciotomy with no recurrence at 2 years follow-up. This is the first case report of plantar fibromatosis from the Indian subcontinent.

Key words: Ledderhose’s syndrome, Plantar fibromatosis, heel pain, swelling.

Accepted: November, 2009
Published: December, 2009

ISSN 1941-6806
doi: 10.3827/faoj.2009.0212.0003


Plantar fibromatosis is a disorder of fibrous tissue proliferation, characterized by a slow-growing nodular thickening, most often within the central band of the plantar aponeurosis. The fibromatotic process grows slowly and invades the skin and deeper structures. [1] The similarities of this condition to those observed in palmar fascia (Dupuytren’s disease) seem to support the theory that the two diseases are expressions of the same disorder. [2] Although much has been discussed about Dupuytren’s contracture in the international literature; little or no information is available regarding plantar fibromatosis from the Indian subcontinent. We present a case of a young woman with isolated disease of her right sole and describe the clinical and pathomorphological features of this rare clinical entity.

Case report

A 30 year-old housewife presented to our out-patient department with a history of painful swelling of her right sole. (Fig.1) The swelling appeared six years ago and was gradually progressive. It is associated with a dull aching type of pain which on later stages prevented her from walking even small distances. On examination, she had multiple nodular, non compressable swellings in her right sole. The biggest nodule measured 2 cm in diameter. The swellings were tender to touch with no local rise in temperature. The skin over the swelling was normal. No flexion contracture of toes [2] or neurovascular deficits was noted. Motion of the foot and ankle were within the normal range. The examination of skin and subcutaneous tissues elsewhere in her body and the palms did not reveal any similar swelling. The patient denied any history of diabetes mellitus [3], epilepsy, chronic liver disease or keloidal tendencies. [4]

Figure 1 Plantar swelling.

Family history was negative. Roentgenographic and hematological investigations were within normal limits, except for a raised ESR (44 mm fall/hour). A presumptive diagnosis of plantar fibromatosis was made on clinical grounds. [5]

The patient underwent subtotal plantar aponeurectomy through an extensile lazy ‘S’ shaped plantar incision avoiding the weight bearing part of the foot. [6] (Figs. 2 and 3)

Figure 2 Fibromatotic nodules seen on exploration.

Figure 3 Excised specimen of plantar fascia.

Intra-operatively the nodules arising from the plantar fascia were grayish in color, firm to hard in consistency and appeared to be attached to the underlying muscles and the medial plantar neural bundle, which had to be excised with the swelling. The skin flaps healed without necrosis and sutures were removed two weeks after the surgery. (Fig.4) The patient was advised a soft sole footwear and weight bearing as tolerated a week after suture removal.

Figure 4 Healed scar after suture removal.

Histopathology of the excised specimen revealed spindle shaped cells and collagen fibers arranged in fascicles and nodules. (Figs 5 and 6) Mitotic figures were absent from the lesion and the margins were found free from atypical spindle cells. Cytogenetic analysis was normal. The patient did not receive post operative radiation.

Figure 5 Photomicrograph showing the fibromatotic process (haematoxylin and eosin x 25) arranged in fascicles and at places forming nodules.

Figure 6 Photomicrograph showing spindle shaped cells and collagen fibers arranged in fascicles (haematoxylin and eosin x 100).

She was pain free about a month after the surgery; however she complained of tingling and numbness in the medial three toes. The numbness gradually disappeared and at 2 years follow-up she was symptom free without any evidence of recurrence. The post-operative weight bearing radiographs did not reveal a decrease in the calcaneal pitch angle, navicular height, and medial cuneiform height at final follow up of 2 years.

Discussion

Ledderhose’s syndrome or plantar fibromatosis is a benign but infiltrative neoplasm with the replacement of the plantar aponeurosis with abnormal fibrous tissue. If left untreated, the disease may progress to irreversible contracture of the toes followed by inability to walk. To the best of our knowledge plantar fibromatosis has never been reported from the Indian subcontinent. The fibromatotic process affecting the plantar fascia assumes greater significance in our population as many walk with bare feet. Early surgical intervention in plantar fibromatosis once the nodules are prominent and causing pain is therefore suggested in our population.

Contrary to Skoog [7], the authors of this case report believe that micro-trauma is an unlikely etiology in the development of plantar fibromatosis in the Indian population where many walk with bare feet. The classical age of presentation is in young adults, although the paediatric and preadolescent population can present with asymptomatic, bilateral nodules on the anteromedial heel pad. [8] These patients usually have a positive family history and the fibromatotic process shows spontaneous regression and can safely be observed. [9,10]

Plantar fibromatosis is associated with palmar fibromatosis, penis plasticus (Peyronie’s disease), knuckle pads, keloids, firm subcutaneous and sub mucosal nodules elsewhere in the body. Frozen shoulder and epilepsy have been reported by various authors in the past couple of decades. [4] Although recurrent lesions are fairly common, we have not found any evidence in the literature to indicate plantar fibromatosis pursues the course of a malignant neoplasm. Magnetic resonance imaging (MRI) is a non-invasive method for confirmation of the clinical diagnosis and also has an important role in planning surgical treatment by delineating the extent of the lesion. [11]

Although Sawyer [12], et al., reported on balanced reciprocal translocation (2; 7) (p13; p13) and Breiner13,et al., on Trisomy 8 and 14, we did not encounter any cytogenetic abnormality in our patient. Conservative management may be applicable in individuals with no or mild symptoms and includes padded shoe with insoles tailored in such a way as to transfer the weight away from the prominent nodules. [1] For those suffering from pain and local aggressiveness as evidenced by clinical examination and MRI, surgery in the form of wide radical excision offers the best outcome. [1,14] Similar to Boc, et al., [15] we found the fibromatotic process engulfing the medial plantar nerve which had to be sacrificed along with the specimen. Although effective in decreasing the recurrence rate, adjuvant radiotherapy should be used very selectively because of its serious side effects. [16,17] Judging from the available data, recurrence did not appear to be related to any specific clinical or pathologic feature.

Conclusion

We feel that although a presumptive diagnosis can be made on clinical grounds alone, MRI may delineate the extent and local involvement of the fibromatotic process. Tumor free margins are an essential prerequisite to avoid local recurrence. A subtotal resection of the plantar aponeurosis to relieve symptoms and prevent progression seems to be the best treatment option in symptomatic patients.

References

1. Lee TH, Wapner KL, Hecht PJ: Plantar fibromatosis – Current Concepts Review : J Bone Joint Surg Am. 75: 1080 – 1084, 1993.
2. Donato RR, Morrison WA: Dupuytren’s disease in the feet causing flexion contractures in the toes. J Hand Surg 21B (3): 364 – 366, 1996.
3. Elhadd TA, Ghosh S, Malik MI: A Collier Plantar fibromatosis and Dupuytren’s disease: an association to remember in patients with diabetes. Diabet Med 24 (11), 1305 – 1305, 2007.
4. Allen RA, Woolner LB, Ghormley RK: Soft Tissue tumours of the sole: With special Reference to Plantar Fibromatosis. J Bone Joint Surg 37A:14 – 26, 1955.
5. Watson-Ramirez L, Rasmussen SE, Warschaw KE, Mulloy JP, Elston DM: Plantar fibromatosis: use of magnetic resonance imaging in diagnosis. Cutis 68 (3) 219 – 222, 2001.
6. Curtin JC: Fibromatosis of the plantar fascia: Surgical technique and design of skin incision J Bone Joint Surg 47A: 1605 – 1608, 1965.
7. Skoog T: Depuytren’s Contraction: With special reference to aetiology and improved surgical treatment. Its occurrence in epileptics. Note on Knuckle pads. Acta Chir Scandinavica, Supplementum 96 (139) 150 – 159, 1948.
8. Jacob CI, Kumm RC: Benign anteromedial plantar nodules of childhood: a distinct form of plantar fibromatosis. Pediatr Dermatol 17(6): 472 – 474, 2000.
9. Godette GA, O’Sullivan M, Menelaus MB: Plantar fibromatosis of the heel in children: a report of 14 cases: J Peadiatr Orthop 17(1): 16- 17, 1997.
10. Pijnenburg MW, Thomasse JE, Odink RJ, Hoekstra HJ: Plantar fibromatosis in infants. Ned Tijdschr Geneeskd. 142 (48): 2638 – 2640, 1998.
11. Halefoğlu AM: The use of magnetic resonance imaging in the diagnosis of plantar fibromatosis: a case report. Acta Orthop Traumatol Turc 39(2):176 – 179, 2005.
12. Sawyer JR, Sammartino G, Gokden N, Nicholas RW: A clonal reciprocal t(2;7)(p13;p13) in plantar fibromatosis. Cancer Genet Cytogenet 158(1): 67 – 69, 2005.
13. Breiner JA, Nelson M, Breathier BD, Neff JR, Bridge JA: Trisomy 8 and Trisomy 14 in plantar fibromatosis. Cancer 108 (2):176 – 177, 1999.
14. Dürr HR, Krödel A, Trouillier H, Lienemann A, Refior HJ: Fibromatosis of the plantar fascia: diagnosis and indications for surgical treatment. Foot Ankle Int 20 (1):13 – 17, 1999.
15. Boc SF, Kushner S: Plantar fibromatosis causing entrapment syndrome of the medial plantar nerve. J Am Podiatr Med Assoc 84: 420 – 422, 1994.
16. Landers PA, Yu GV, White JM, Farrer AK: Recurrent plantar fibromatosis. J Foot Ankle Surg 32 (1): 85 – 93, 1993.
17. De Bree E, Zoetmulder FA, Keus RB, Peterse HL, Van Coevorden F: Incidence and treatment of recurrent plantar fibromatosis by surgery and postoperative radiotherapy: Am J Surg 87(1): 33 – 38, 2004.


Address correspondence to: Dr.Samik Banerjee; E mail: bashb02@gmail.com
Department of Orthopaedic Surgery, Medical College Calcutta, 88 College Street, Kolkata , West Bengal , India, 700073; Phone – 91-9748039815

Samik Banerjee, MS , MRCS, Senior Resident ,Department of Orthopaedic Surgery, Medical College, Kolkata, India.
2  Milan Muhammad, MS (Post Graduate Student) Junior Resident, Department of Orthopaedic Surgery, Medical College, Kolkata, India.
3  Chinmoy Nath , MS, Associate Professor, Department of Orthopaedic Surgery, Medical College, Kolkata, India.
4  Dilip Kumar Pal, MS , Professor, Department of Orthopaedic Surgery, Medical College, Kolkata, India.

© The Foot and Ankle Online Journal, 2009

Investigating Plantar Fasciitis

by Valerie A.J. Potter, MBChB, BSc (Hons), MSc1

The Foot and Ankle Online Journal 2 (11): 4

Plantar fasciitis is a condition caused by inflammation of the plantar aponeurosis and is a common cause of heel pain. The diagnosis is clinical and investigations are generally not required. However, in certain cases such as an atypical presentation or where there is no response to treatment, the clinician may consider further investigation. This review article briefly introduces the condition and goes on to discuss the possible options for investigation. This includes evaluation and usefulness of such tests as blood evaluation, radiographs, ultrasound, bone scintigraphy, magnetic resonance imaging (MRI) and nerve conduction studies.

Key words: Plantar fasciitis, investigations, heel pain, MRI, ultrasound, bone scintigraphy, nerve conduction.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License.  It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ©The Foot and Ankle Online Journal (www.faoj.org)

Accepted: October, 2009
Published: November, 2009

ISSN 1941-6806
doi: 10.3827/faoj.2009.0211.0004


Anatomy and etiology of plantar fasciitis

The plantar fascia of the foot refers to the deep fascia of the sole. It arises posteriorly from the calcaneus and divides into bands which divide to enclose tendons. The thick central part of this fascia forms the plantar aponeurosis which is arranged into bands of fibrous connective tissue. The plantar fascia has a number of roles, which include holding parts of the foot together, protecting the plantar surface of the foot from trauma and helping to support the foot’s longitudinal arch. ‘Plantar fasciitis’ refers to inflammation of the plantar aponeurosis. This is a relatively common clinical condition and cause of heel pain resulting from a degenerative process. The exact mechanism is poorly understood but thought to be multifactorial. Mechanical overload is believed to play a key role. [1] Risk factors include age, obesity, biomechanical abnormalities of the foot and particular occupation- related or recreational activities such as aerobics and running particularly in flat or worn shoes.

The chronic form of heel pain is now more commonly termed ‘plantar fasciosis’. Repetitive trauma and overuse leads to microtears, with cycles of tearing and healing causing the release of various chemical mediators. This is thought to lead to myxoid degeneration and weakness of the fascia as well as pain. [2] This is a degenerative fasciosis without inflammation. [3]

Plantar fasciitis can also be associated with various inflammatory systemic conditions such as gout and rheumatoid arthritis. An increased incidence exists in patients with certain HLA B27 sponyloarthropathies in which case the fasciitis often presents at a younger age and carries a poorer prognosis. [4]

Clinical features

Typically the patient presents with pain in one or both plantar aspects of the feet. This has usually been insidious in onset although occasionally can be acute. The pain may be poorly localized particularly initially, but then may become maximal at the origin of the fascia, to the medial calcaneal tuberosity. It tends to be worse in the morning when the foot is first put on the floor or following a period of rest and is relieved on movement during the day. However, it can again be exacerbated by increased weight-bearing activity such as running. It is often described as a ‘tearing’ pain. On inspection, the foot appears normal with either no or slight swelling. [5] Palpating the foot, the practitioner may elicit maximal tenderness at the aforementioned origin of the plantar fascia and pressure here reproduces the pain. Passive dorsiflexion of the toes and ankles can also cause pain by stretching the fascia.6 The clinician must also consider a differential diagnosis for heel pain. (Table 1)

Table 1 Differential diagnosis for plantar fasciitis.

Investigations in plantar fasciitis

The diagnosis of plantar fasciitis is a clinical one based on the history and examination. It is also usually self-limiting and managed conservatively. However, in particular circumstances such as atypical presentations or failing to respond to treatment, the clinician may wish to consider other tests to aid in the diagnosis and differential diagnosis of heel pain syndrome.

Blood tests

In most cases, these do not play a role in diagnosis although occasionally the clinician may wish to perform certain blood tests if considering a systemic condition or alternative cause. A raised erythrocyte sedimentation rate or C-reactive protein may indicate underlying inflammation or infection respectively. Likewise, testing for HLA B27 gene may be helpful if suspecting one of the HLA B27 spondyloarthropathies such as ankylosing spondylitis, psoriatic arthritis, reactive arthritis or enteropathic arthritis. Further examples include gout in which serum uric acid is usually raised and a diagnosis of Paget’s disease is supported by a raised alkaline phosphatase with a normal phosphate and calcium.

Plain radiograph

It is common for a plain lateral radiograph of the foot to be ordered, often to rule out a stress fracture, heel spurs, fractured spurs or some other bony cause of the patient’s heel pain. However, one study involving 215 heels concluded that routine radiographs are of limited use in the initial evaluation of adults presenting with non-traumatic heel pain and should be reserved for those who do not improve or have an unusual history or physical signs. This study also found that radiographs were normal in 17.2% and that incidental radiographic findings were observed in 81.4%; most commonly plantar calcaneal spurs and Achilles spurs (46.5%, 100 of 215). [7]

One may argue that these incidental findings could in some cases explain the patient’s symptoms although a heel spur does not have any diagnostic value. [8] The aforementioned study also found that only 2% of the patients in their study had abnormal findings that prompted further evaluation supporting the conclusion that radiographs are generally of limited use and hence not cost effective. [7]

Ultrasound

In difficult cases, the clinician may wish to request an ultrasound of the foot. A number of studies have sought to evaluate usefulness of this modality with respect to diagnosing plantar fasciitis. One such study found that in patients with plantar fasciitis, ultrasound may detect relatively small differences in plantar fascia thickness (2.9mm in patients with unilateral plantar fasciitis, 2.2mm for the contralateral heel and 2.5mm for the control group). [9] A similar conclusion was reached by a Cardinal, et al., who found that increased thickness of the fascia and hypoechoic fascia are sonographic findings of this condition. They concluded that ultrasound may be a valuable non-invasive technique for the diagnosis of plantar fasciitis. [10]

Bone Scintigraphy

Bone scintigraphy is an investigation which uses technetium-99m labelled diphosphonates. It is one of the most frequently performed of all radionuclide procedures. The isotope is injected into the patient intravenously and is then cleared from the blood and taken up by the skeleton. Blood flow and osteoblastic activity determine skeletal uptake. This mode of imaging is not specific but is very sensitive and so is useful in screening for many pathological conditions. It is often used to investigate potential malignant bony lesions but may be requested, as in the context of heel pain, to explore chronic foot pain which is not responding as expected. In cases of musculoskeletal trauma, radionuclide bone imaging is useful for identifying pathologic conditions for which radiographs may be non-diagnostic. [11] It is often used to rule out a stress fracture.
Several studies have sought to determine the value of this modality in the diagnosis of plantar fasciitis. One study compared ultrasonography and bone scintigraphy; both were found to be sensitive and specific diagnostic imaging investigations in this condition. This study found that both confirmed the clinical diagnosis in 25 of 27 heels. However, this again serves to highlight the accuracy of clinical diagnosis supporting the view that imaging is only rarely required. Comparing the two investigations, the differences in sensitivity and specificity were not statistically significant and given the relative ease and non invasiveness of ultrasonography, this would thus seem to be the choice of imaging to employ. [12] Another study found that focal uptake at the medial calcaneal tubercle was present in the majority of patients in their study who had been diagnosed with plantar fasciitis, thus confirming the diagnosis. [13] A third study came to the conclusion that scintigraphy is very useful in diagnosing plantar fasciitis and distinguishing it from other causes of a painful heel after imaging 15 patients with chronic heel pain; 10 demonstrated scan findings consistent with plantar fasciitis whilst 2 were found to have a calcaneal stress fracture. [14]

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a further possible investigation to perform in difficult cases and is useful in detecting tears or ruptures of the fascia. In plantar fasciitis the MRI may show a widened fascia with increased signal often with some reactive oedema in the adjac ent bone. [15] The normal thickness of the plantar fascia is 4mm; in plantar fasciitis this may be increased to 8mm. In cases of ruptures and tears this thickness can reach 10mm or more and additionally, the MRI will show intrafascial high signal intensity of the T2 weighted image. [16] One study found that maximal thickness of the plantar fascia was significantly increased in patients with plantar fasciitis and that feet with the condition had areas of moderately increased signal intensity in the substance of the fascia. [17]

Although therefore very useful, a study compared the diagnostic accuracy of ultrasound and MRI and found the two comparable and concluded MRI may be reserved for the more complex cases where the diagnosis is not clear. [18] Similarly, another paper found that although MRI is the modality of choice in the morphologic assessment of different plantar fascia lesions, sonography can also serve as an effective tool and may substitute MRI in the diagnosis of plantar fasciitis. [19]

Nerve conduction studies

This is used to look at the ability of electrical conduction of a nerve and so to diagnose nerve damage or dysfunction. It involves the placement of electrodes on the skin at intervals along the nerve in question; a low intensity electrical current is then applied to generate an impulse. Nerve conduction velocity can then be measured by recording the motor response of a muscle to the stimulation of its motor nerve. Nerve conduction studies are rarely required in the context of plantar fasciitis, but may be considered if the clinician is suspecting nerve entrapment as the cause of the patient’s pain. This may include tarsal tunnel syndrome or where an atypical presentation represents a mixed picture. For example, Chang, et al., found that sensory nerve conduction studies were a useful and objective tool in the diagnosis of medical calcaneal neuropathy and that there was an association between this neuropathy and plantar fasciitis. [20] In addition, Baxter’s neuropathy, which is referred to as entrapment of the first branch of the lateral plantar nerve can produce medial heel pain. This can be very similar to that caused by plantar fasciitis and is thought to account for up to 20% of heel pain. [21]

Conclusion

Plantar fasciitis is a common cause of heel and foot pain. In most cases, history and examination provide the diagnosis and treatment can be advised based on severity and duration of symptoms.

If there is doubt as to the cause, investigations, usually rarely indicated, can be considered. Imaging modalities and tests include x-rays, ultrasound, scintigraphy, MRI and nerve conduction studies. The main value of these are in confirming the clinical diagnosis of plantar fasciitis as diagnostic features on imaging do exist and in detecting other causes of the patient’s heel pain. [9] Plain radiography is generally unhelpful; ultrasound appears to be the most useful in difficult cases and has the additional advantages of speed and low cost. MRI, bone scintigraphy and nerve conduction studies are best reserved for when there is a strong clinical suspicious of an alternative diagnosis or when the patient’s heel pain is not responding after 3 months or more of treatment. [6]

References

1. Puttaswamaiah R, Chandran P: Degenerative plantar fasciitis: A review of current concepts. The Foot 17: 3 – 9, 2007.
2. Tsai WC, Wang CL, Tang FT, Hsu TC, Hsu KH, Wong MK: Treatment of proximal plantar fasciitis with ultrasound-guided steroid injection. Arch Phys Med Rehabil 81: 1416 – 1421, 2000.
3. Lemont H, Ammirati KM, Usen N: A degenerative process (fasciosis) without inflammation. J American Podiatric Medical Association 93: 234 – 237, 2003.
4. Foye PM, Stitik TP: Plantar fasciitis. Emedicine, 2008. Accessed 09/23/2009.
5. Amis J, Jennings L, Graham D, Graham CE: Painful heel syndrome: radiographic and treatment assessment. Foot Ankle 9: 91 – 95, 1988.
6. Duff G: Plantar fasciitis and heel pain. Reports on the rheumatic diseases 2: 1 – 4, 2004.
7. Levy JC, Mizel MS, Clifford PD, Temple HT:Value of radiographs in the initial evaluation of nontraumatic adult heel pain. Foot Ankle Int 27: 427 – 430, 2006.
8. Tanz SS: Heel pain. Clin Orthop 28: 169 – 178, 1963.
9. Ozdemira H, Yilmazb E, Murata A, Karakurtb L, Poyraza AK, Ogura E: Sonographic evaluation of plantar fasciitis and relation to body mass index. Eur J Radiology 54: 443 – 447, 2005.
10. Cardinal E, Chhem RK, Beauregard, CG, Aubin B, Pelletier, M: Plantar fasciitis: sonographic evaluation. Radiology 201: 257 – 259, 1996.
11. Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ: Radionuclide bone imaging: An illustrative review. Radiographics 23 (2): 341 – 358, 2003.
12. Kane D, Greaney T, Shanahan M, Duffy G, Bresnihan R, Fitzgerald O: The role of ultrasonogaphy in the diagnosis and management of idiopathic plantar fasciitis. Rheumatology 40: 1002 – 1008, 2001.
13. O’Duffy EK, Clunie GP, Gacinovic S, Edwards JC, Bomanii JB, Ell PJ: Foot pain: specific indications for scintigraphy. Br J Rheumatol 37: 442 – 447, 1998.
14. Intenzo CM, Wapner KL, Park CH, Kim SM: Evaluation of plantar fasciitis by three-phase bone scintigraphy. Clin Nucl Med 16: 325 – 328, 1991.
15. Ostlere S: Imaging the ankle and foot. Imaging 2003;15: 242 – 269.
16. Kline A: Plantar fascial rupture of the foot: a case report. The Foot and Ankle Online Journal 2 (5): 4, 2009.
17. Berkowtiz JF, Kier R, Rudicel S: Plantar fasciitis: MR imaging. Radiology 179: 665 – 667, 1991.
18. Abdel-Wahab N, Fathi S, Al-Emadi S, Mahdi S: High resolution ultrasonographic diagnosis of plantar fasciitis: a correlation of ultrasound and magnetic resonance imaging. International Journal of Rheumatic Disease 11: 279 – 286, 2008.
19. Sabir N, Demirlenk S, Yagci B, Karabutlut N, Cubukcu S: Clinical utility of sonography in diagnosing plantar fasciitis. J Ultrasound Med 24: 1041 – 1048, 2005.
20. Chang CW, Wng YC, Hou WH, Lee XX, Chang KF: Medial calcaneal neuropathy is associated with plantar fasciitis. The Journal of Foot and Ankle Surgery 118: 119 – 123, 2007.
21. Chundru U, Liebeskind A, Seidelmann F, Fogel J, Franklin P, Beltran J: Plantar fasciitis and calcaneal spur formation are associated with abductor digiti minimi atrophy on MRI of the foot. Skeletal Radiology 37: 505 – 510, 2008.


Address correspondence to: East Surrey Hospital, Canada Avenue, Redhill, Surrey, RH1 5RH, U.K.

Acute Stroke Unit, East Surrey Hospital, Canada Avenue, Redhill, Surrey, RH1 5RH, U.K. vpotter@doctors.org.uk

© The Foot and Ankle Online Journal, 2009

Plantar Fascial Rupture of the Foot: A case report

by Al Kline, DPM1  

The Foot and Ankle Online Journal 2 (5): 4

Plantar fascial rupture is rarely presented in the literature. Spontaneous rupture of the plantar fascia is commonly preceded by plantar fasciitis. A 60 year old male presents following an acute injury of his foot while playing softball. He presents with acute pain and ecchymosis to the plantar arch of the foot. Plantar fascial rupture was diagnosed clinically and confirmed on magnetic resonance imaging (MRI). This case discusses the clinical evaluation, MRI results and treatment of acute, spontaneous rupture of the plantar fascia. We also describe the MRI differences of plantar fasciitis and plantar fascial rupture.

Key words: Plantar fasciitis, plantar fascial rupture, heel pain, Magnetic resonance imaging

This is an Open Access article distributed under the terms of the Creative Commons Attribution License.  It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ©The Foot and Ankle Online Journal (www.faoj.org)

Accepted: April, 2007
Published: May, 2009


Plantar fascial injuries are a common source of foot pain. Plantar fasciitis is the most common type of plantar fascial injury. The condition is characterized by small tears of the plantar aponeurosis that can cause inflammation and thickening of the plantar aponeurosis. The causes of injury are related most commonly to stress and strain. General injury to the plantar fascia can be divided into three categories: mechanical, degenerative and systemic. [1] Mechanical conditions such as pronation, forefoot varus and rearfoot valgus will often lead to increased tension and strain of the plantar aponeurosis. This may be exacerabated by increased activity and lack of proper shoe and in-step support. It is now widely accepted that degenerative changes can occur within the plantar fascia due to repetitive micro tears and peri-fascial edema termed plantar fasciosis. [2] This is characterized as a degenerative process of myxoid degeneration without inflammation. [2]

There are also a number of inflammatory systemic conditions that can cause plantar fasciitis. These include rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, Reiter’s syndrome, gout, Behcet’s Syndrome and systemic lupus erythematosus.3 In general, the etiology of arch and heel pain can be mulifactorial in nature. When tension along the plantar aponeurosis exceeds its inherent strength, an acute fascial rupture can result.

Case Report

A 60-year old healthy male presented to our office in acute pain. He presented with a limp. He stated that he had been having arch and heel pain of the right foot over the past month. He recently participated in a softball game. He states that while ‘sprinting’ to a base, he felt a ‘pop’ in his arch followed by acute pain and swelling. He immediately stopped playing and placed ice on the arch region of the foot. Clinical evaluation of the foot reveals an extremely tender plantar fascia with localized bruising or ecchymosis (Fig.1).

Figure 1  The plantar fascia shows bruising directly along the arch of the foot.  There is extreme point tenderness to this region.

Pain was palpable along the entire course of the plantar fascia and more pronounced along the central arch. The patient was sent for magnetic resonance imaging (MRI) confirmation to rule out plantar fascial rupture. Pain was palpable along the entire course of the plantar fascia and more pronounced along the central arch. The patient was sent for MRI confirmation to rule out plantar fascial rupture.

MR Imaging and Findings

MRI shows classic signs of fascial tear and rupture. Multiplanar, multisequence images were obtained showing increased thickness of the plantar fascia up to 10mm with convexed dorsal thickening. A classic fusiform appearance of the fascia is seen in the region of rupture.

The sagittal image also shows intrafascial high signal echo on T2 imaging consistent with plantar fascial disruption of the fibers. (Fig. 2)

Perifascial edema (arrow) is seen along the deeper musculature adjacent to the plantar aponeurosis. The coronal view on STIR or inversion recovery sequencing shows dramatic intrafascial edema and hemorrhage. Again, fusiform thickening of the musculature and plantar aponeurosis is appreciated. (Fig. 3)

Figure 2  T2 sagittal image shows a central thickening up to 10mm with enlargement and nodular thickening of the plantar aponeurosis.

Figure 3  STIR (inversion recovery image) coronal views also shows intrafascial edema and hemorrhage.

Axial imaging shows increased signal intensity on T1 and T2 imaging with appreciable intrafascial and perifascial edema. (Fig. 4 A and B)

 

Figure 4A and 4B  MR Axial imaging shows T1 image (A).  The T2 image shows increased perifascial, intrafascial and muscular edema. (B)

Treatment

Treatment of plantar fascia rupture depends on the extent of injury confirmed by MRI findings and activity level of the patient. Our patient was active for his age and his overall injury was acute and extremely painful. In this respect, we recommended the patient wear a non-weight bearing cast for 4 weeks.

We placed him on NSAIDS for 2 weeks during his casting period. His recovery after casting included local stretching and physical therapy. We also placed him in orthotics.

Discussion

The clinical presentation of acute plantar fascial rupture differs from plantar fasciitis. The pain of an acute rupture is located more distal to the insertion of the plantar fascia and bruising is commonly seen along the middle of the arch. Clinically, this is extremely tender to touch and the patient will have trouble walking. Most often, clinical evaluation, activity of the patient and onset of pain will help the practitioner determine the extent of injury and determine fascial strain or fasciitis from actual tear or rupture of the plantar fascia. Radiographic evaluation lacks the proper contrast resolution for proper differentiation of plantar fasciitis and fascial rupture. Fascial thickening and perifascial edema can be seen on enhanced soft tissue radiographic imaging. However, MR imaging is superior in differentiating acute plantar fasciitis, chronic plantar fasciitis from partial or acute plantar fascial rupture. MR imaging will determine the exact localization and extent of fascial injury. In this regard, the proportionate thickness and amount of edema will help the practitioner determine the proper course of treatment.

The attachment of the plantar fascia is best demonstrated on coronal images. The entire course of the aponeurosis is best seen on the sagittal images. Visualizing of the medial fascial band is best seen in the sagittal and coronal views. The lateral band is best observed with oblique imaging, although sagittal and coronal images can also be used. MR imaging studies also show a difference in findings when comparing fasciitis and fascial rupture. In plantar fasciitis, there is often thickening of the aponeurosis as seen on sagittal image without actual disruption of the fascial fibers. The appearance of the plantar fascia is usually thickened and uniform. In plantar fascial rupture, there is often a fusiform appearance of the aponeurosis.

There is also widespread abnormal high signal intensity infiltrating perifascial soft tissues consistent with local edema. The most consistent finding in acute partial or complete rupture of the plantar aponeurosis is fusiform thickening of the fascia with abnormal, intrafascial signal intensity. Theodorou, et al., studied MR imaging of 14 patients with partial or complete rupture of the plantar fascia revealing abnormal, fusiform thickening of the plantar aponeurosis in all patients. All patients showed abnormal absence of T1-weighted low signal intensity of the plantar aponeurosis at the site of complete rupture or partial loss of T1-weighted low signal intensity respectively. [1]

Treatment can vary on extent of injury and activity of the patient. In earlier studies and before MR imaging techniques, patients with rupture were often treated conservatively using crutches, ice packs, anti-inflammatory agents and foot straps. Diagnosis was simply made by presentation of acute symptoms such as severe localized swelling and acute tenderness. As the swelling diminished, there is often a palpable defect that is replaced by a hard mass that gradually became less tender. [4] Leach, et al., reported suspected partial ruptures in six long distance runners who were treated conservatively. Only one patient required surgery for persistent swelling, undergoing a fascial release. They reported full recovery of all the long distance runners back to their original pre-injury activity with no deleterious effects, even in the one surgical patient. Now, with the aid of MR imaging, diagnosis and treatment can be more specific to extent of injury.

This case highlights clinical and MRI findings in a patient with plantar fascial rupture following an acute injury while playing softball. A fusiform appearance of the fascia on MR imaging was consistent with plantar fascial rupture and the patient’s clinical presentation. In its largest point, the intrafascial edema can increase the thickness of the fascia to over 10 mm. The normal thickness of the plantar fascia is about 4 mm in thickness. In cases of plantar fasciitis, the thickness can increase to 8mm. Most fascial ruptures and partial tears show an increase in thickness of the fascia of 10mm or more with intrafascial high signal intensity of T2 weighted MR images.

In plantar fasciitis, the MR T2 weighted imaging or bright signal intensity is not actually seen within the fascia, but can be readily seen perifascially. If a bright signal is seen within the fascia, it will represent rupture of the fascial fibers confirming the diagnosis of plantar fascial rupture.

References

1. Theodorou, D.J., et al.: Plantar fasciitis and fascial rupture: MR imaging findings in 26 patients supplemented with anatomic data in cadavers. Radiographics. 20: S181- S197, 2000.
2. Lemont H, Ammirati, KM, Usen N: Plantar fasciitis: A degenerative process (fasciosis) without inflammation. J Am Podiatr Med Assoc 93(3): 234 – 237, 2003.
3. Barrett SL, O’Malley R.: Plantar fasciitis and other causes of heel pain. American Family Physician 59 (8), 1999.
4. Leach R, Jones R, Silva T: Rupture of the plantar fascia in athletes. J Bone Joint Surgery 60A (4): 537 – 539, 1978.


Address correspondence to: Al Kline, DPM
3130 South Alameda, Corpus Christi, Texas 78404.

1 Adjunct Clinical Faculty, Barry University School of Podiatric Medicine. Private practice, Chief of Podiatry, Doctors Regional Medical Center. Corpus Christi, Texas, 78411.

© The Foot and Ankle Online Journal, 2009

Pain Scale for Plantar Fasciitis

by Buck Willis, PhD1 , Angel Lopez, DPM2 , Andres Perez, MD-DPM3 , Larry Sheridan, DPM4 ,Stanley R Kalish, DPM5

The Foot and Ankle Online Journal 2 (5): 3

Background: Plantar fasciitis (PF) is a common and debilitating pathology whose chief complaint is acute plantar heel pain. This pathology affects between 1 and 2 million Americans each year, but a specific descriptive pain/disability scale has not been available to measure the severity and/or changes in pain specific to this pathology. The purpose of this study was to examine the PF, Pain and Disability Scale (PFPS) and its ability to discriminate between pain from PF and other heel pain.
Methods: The PFPS survey includes a series of key questions that relate to symptoms and control questions for PF. It also includes visual analogue scale and questions to measure the effect the pain has on activities of daily living. This questionnaire was administered to 400 patients who had been diagnosed with either PF or another pathology causing heel pain (e.g. calcaneal bursitis). Patients’ mean age was 50 years ±16 (242 females and 158 males).
Results: There was a significant difference in scores from PF patients versus other heel pain patients when compared in a one-way analysis of variance (P 0.05) or ethnicity (P > 0.05).
Discussion: The survey was effective in measuring pain that is unique to PF through questions of mobility/function and activities of daily living, and it showed a significant difference between patients with other heel pain vs. PF. This could become an effective tool in diagnosis and assessment of pain unique to PF.

Key words: Plantar fasciitis, Pain and disability scale, heel pain

This is an Open Access article distributed under the terms of the Creative Commons Attribution License.  It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ©The Foot and Ankle Online Journal (www.faoj.org)

Accepted: April, 2009
Published: May, 2009


Plantar fasciitis (PF) is considered to be one of the most common foot pathologies affecting 1 to 2 million Americans each year. [7,9-11] However, a descriptive pain/disability scale has not been available to measure severity and/or changes in pain specific to this pathology.

Current orthopaedic pain scales include a simple 10 point Visual Analogue Scale (VAS) [7,18] to the “Disabilities of Arm/Shoulder/Hand” and the “Levine-Katz Functional Survey,” which measure the effect and disabilities of upper extremity pain has during Activities of Daily Living (ADL).

An overall foot-health questionnaire has been developed, [1] but this survey measures the broad health status of one’s foot and would not show specific changes in pain from PF in accordance to ADLs. The VAS scores pain on a scale of 1 to 10 or 1 to 100 and has been effective in helping clinician’s measure pain. However, confounding variables affect these scores.

Differences in VAS scores between different dates may not be true barometer of the change in pain. The foot health status questionnaire [7,8] and the VAS [2,7,8,13,17,18] have been used in many studies, but other authors have searched for a better method to measure changes following treatment of PF. Rose, et al., examined this question using nerve conduction (medial calcaneal nerve and the posterior nerve) to gain further insight into patient’s true recovery from PF. [15]

The foot function index (FFI) [2,8] was compared in clinical settings with PF patients by Landorf and Radford. [8] Patients were recruited for two trials to examine the “minimal important difference” for the patients when comparing these pain scales. The results indicated the difference that would benefit clinician’s interpretation, but Landorf and Radford remarked that these pain scores themselves do not “Take into account the affect a disorder has on the patient’s life in general.” [8]

Effective Orthopaedic Rehab: Seven Steps to Complete Recovery was written as a supplemental book for athletic training students and measures pain in ADLs and the effect motion and movement may have on the pain. Reviewers of this scale felt that it was a more complete, analytical measurement of pain than would be acquired by a VAS. [19]

The validity and source of the questions used in this PF, Pain and Disability Scale (PFPS) survey came from examination and comparison to questions in other text books, recent manuscripts, and from the clinical practice of diagnosing and treating PF. [1,3,8,11,17-19] The PFPS has been compared and validated beside the foot function index, and the 100 point VAS is actually included in the PFPS. However, the PFPS gives a more detailed, analytical analysis of patients’ pain by also examining symptomatic questions used in the differential diagnosis and questions regarding pain in ADLs. The purpose of this study was to examine the PFPS survey’s ability to discriminate between pain from PF and other heel pain.

Methods

Four hundred patients who presented with acute heel pain were recruited at four different foot/ankle clinics. Each patient was clinically examined to diagnose and categorize PF versus another heel pain condition such as calcaneal bursitis or calcaneal fractures. (See differential diagnosis on Table 1 and demographics of the patients can be seen in Table 2.) All patients completed the PFPS and informed consent was obtained for each patient participating in this study. Ethical approval for this study was granted by the Copernicus Group IRB.

Table 1  Differential diagnosis in PF.

Table 2  Patient demographics.

The PFPS includes unique symptomatic questions in differentiating PF and control questions as well, which make scores of 0 or 100 points to be invalid. If a patient had recorded either of these scores the test would have been deleted from this study, but no such incidence occurred. The PFPS questions were internally validated with inclusion of the 100 point VAS and externally validated through orthopaedic text and podiatric publications. [1,6,8,16,18,19]

Data Analysis

After PFPS questionnaires were collected from patients at four foot/ankle clinics (This form is blinded to the patent’s name and only the Date of Birth was used for tracking as required under the Declaration of Helsinki). A one-way analysis of variance (ANOVA) with post-hoc t-tests were used to determine differences between gender or ethnicity. All statistical tests were performed at an alpha level of 0.05 using SPSS and Microsoft Excel software.

Results

There was a statistically significant difference in scores of PF patients vs. scores of other heel pain patients (P 0.05) or ethnicities (P > 0.05).

Table 3  Results (SD = standard deviation)

The mean difference between PF vs. other heel pain was more than 35 points and this is believed attributed to the fact that the PFPS includes questions uniquely symptomatic to PF like pain from the first steps in the morning and reduced morning pain from toe walking. (See Figure 1, questionnaire.) The purpose of this study was to examine the PFPS survey’s ability to discriminate between pain from plantar fasciitis (PF) and other heel pain.

Figure 1  Study Questionnaire:  PFPS Plantar Fasciitis Pain/Disability Scale (PDF)

Discussion

Current studies support the need for a pain scale that can uniquely assess pain exclusive to PF for diagnosis and assessment. [2,6,8,11,15,18] Landorf and Radford question the statistical significance in changes with the VAS because of the multiple confounding variables associated with that test. They determined that a “Minimally Important Difference” was based not on statistical values alone but changes in “the effect a disorder has on the patient’s life in general”. [8]

Bennett, et al., developed a questionnaire to measure overall foot health. [1] Their questionnaire examined four different domains of questions (with 107 participants). The “domains” (or categories) of questions were Pain, Function, Footwear, and General Foot Health. One functional question was “How much does your foot health limit you in walking” [1] which is ideal in measuring the overall foot health but is not symptom specific to PF.

Rose, et al., [15] suggest using nerve conduction to evaluate changes in PF but few podiatrists may have nerve conduction equipment in their office. The PFPS can be administered in almost any setting. The existing pain scales are effective in gauging overall pain, [1,2,8,13,17,18] but they lack the specific inclusion of symptomatic questions that will allow specific, objective, analytical measurement of change in symptoms unique to PF. The PFPS effectively showed the difference between PF patients vs. patients with other pathologies causing heel pain.

The PFPS will allow clinician’s more descriptive, exclusive analysis of PF pain for evaluation of treatment than the 100-pint VAS scale.

For example a young woman’s score VAS and PFPS drops from 70 to 60 which would be “statistically significant” but, it may not show “Minimally Important Difference”.8 However a comparison the current vs. previous PFPS tests of this patient, shows a changed Q#14 because she no longer prefers toe walking, and Q#15 which shows reduced pain from “Walking in the morning” and reduced pain from “Standing after watching a movie.” This would display a “Minimally Important Difference”8 and answer the need for a pain scale that can uniquely assess pain exclusive to PF for diagnosis and evaluation.2,6,8,11,15,18

In this study the PFPS has effectively discriminated pain unique to PF patients vs. heel pain caused by other foot pathologies. A future study should be conducted using this PFPS to measure changes in PF patients’ pain through a treatment regime, lasting several months. That would further validate the efficacy of this questionnaire in diagnosis and assessing pain unique to PF.

References

1. Bennett PJ, Patterson C, Wearing S, Baglioni T. Development and validation of a questionnaire designed to measure foot-health status. J Am Podiatr Med Assoc 88 (9):419 – 28, 1998.
2. Digiovanni BF, Nawoczenski DA, Malay DP, Graci PA, Williams TT, Wilding GE, Baumhauer JF. Plantar fascia-specific stretching exercise improves outcomes in patients with chronic plantar fasciitis. A prospective clinical trial with two-year follow-up. J Bone Joint Surg 88A:1775 – 81, 2006.
3. Dmitri Luke BS. Plantar fasciitis: a new experimental approach to treatment. Med Hypotheses 59(1): 95 – 7, 2002.
4. Fishco WD, Goecker RM, Schwartz RI. The instep plantar fasciotomy for chronic plantar fasciitis. A retrospective review J Am Podiatr Med Assoc 90 (2): 66 – 69, 2000.
5. Guldemond NA, Leffers P, Sanders AP, Emmen H, Schaper NC, Walenkamp GH. Casting methods and plantar pressure: effects of custom-made foot orthoses on dynamic plantar pressure distribution. J Am Podiatr Med Assoc 96 (1): 9 – 18, 2006.
6. Intenzo CM, Wapner KL, Park CH, Kim SM. Evaluation of plantar fasciitis by three-phase bone scintigraphy. Clin Nucl Med 16 (5):325 – 8, 1991.
7. Landorf KB, Keenan AM, Herbert RD. Effectiveness of foot orthoses to treat plantar fasciitis: a randomized trial. Arch Intern Med. 166 (12):1305 – 10, 2006.
8. Landorf KB, Radford JA. Minimal important difference: values for the foot health status Questionnaire, Foot Function Index and Visual Analogue Scale. The Foot 18(1):15-19, 2008.
9. Lemont H, Ammirati KM, Usen N. Plantar fasciitis: A degenerative process (fasciosis) without inflammation. J Am Podiatr Med Assoc 93 (3): 234 – 237, 2003.
10. Martin JE, Hosch JC, Goforth WP, Murff RT, Lynch DM, and Odom RD. Mechanical treatment of plantar fasciitis: A prospective study. J Am Podiatr Med Assoc 91(1): 55 – 62, 2001.
11. Marx, RC, Mizel, MS. What’s new in foot and ankle surgery. J Bone Joint Surg 90A: 928 – 942, 2008.
12. Ng A, Beegle T, Rockett AK. Atypical presentation of plantar fasciitis secondary to soft-tissue mass infiltration. J Am Podiatr Med Assoc 91 (2): 89 – 92, 2001.
13. Radford JA, Landorf KB, Buchbinder R, Cook C. Effectiveness of calf muscle stretching for the short-term treatment of plantar heel pain: a randomised trial. BMC Musculoskeletal Disord 19: 8: 36, 2007.
14. Riddle DL, Pulisic M, Pidcoe P, Johnson RE. Risk factors for Plantar fasciitis: a matched case-control study. J Bone Joint Surg Am. 2003 May;85-A(5):872-7. Erratum in: J Bone Joint Surg 85A (7):1338, 2003
15. Rose JD, Malay DS, Sorrento DL: Neurosensory testing of the medial calcaneal and medial plantar nerves in patients with plantar heel pain. J Foot Ankle Surg 42 (4):173 – 7, 2003.
16. Ross M. Use of the tissue stress model as a paradigm for developing an examination and management plan for a patient with plantar fasciitis. J Am Podiatr Med Assoc 92(9): 499 – 506, 2002.
17. Schepers T, Heetveld MJ, Mulder PG, Patka P. Clinical outcome scoring of intra-articular calcaneal fractures. J Foot Ankle Surg 47 (3): 213 – 8, 2008.
18. Walther M, Radke S, Kirschner S, Ettl V, Gohlke F. Power doppler findings in plantar fasciitis. Ultrasound Med Biol 30(4): 435 – 40, 2004.
19. Willis B. Effective orthopedic rehab: Seven steps to complete recovery, Chapter I, 10 – 15, Trafford publishing, Victoria BC, Canada, 2003.


Address correspondence to: Texas State University, Health Physical Education and Recreation, San Marcos, TX (at the time of this study)
Email: BuckPhD@yahoo.com

1 Dynasplint Systems, Inc. PO Box 92135 Austin, TX 78709. (512) 297-1833
2 Lopez Podiatry; Ft Worth, Texas 910 W North Side Dr Ft Worth, TX 76164. (817) 625-1103 .Dralldpm@aol.com
3 Orlando Foot and Ankle Clinic; Orlando, FL 3670 Maguire Boulevard, Suite 220 Orlando, FL 32803. (407) 423-1234 AnPerez63@hotmail.com
4 Kaiser Permanente, Musculoskeletal Services; Sacramento, CA 2025 Morse Avenue Sacramento, CA 95825. (916) 973-5899 larry.sheridan@kp.org
5 Atlanta Foot and Leg Clinic; Jonesboro, GA 6911 Tara Boulevard, Suite #104 Jonesboro, GA 30236 (770) 477-9535 Srkalish@bellsouth.net

© The Foot and Ankle Online Journal, 2009