Tag Archives: Ponseti

Distal lower extremity manifestations in spina bifida patients of the Yucatan Peninsula: A 24-year retrospective case series

by Alexandra Heidtmann, BS1; Lahari Madulapally, BS, MA1; Luis Rodriguez Anaya, DPM2*; Daniel Cawley, DC, MS2

The Foot and Ankle Online Journal 13 (4): 8

Spina Bifida, a rare congenital disorder with an incidence of 7.85 per 10,000 births in Mexico. It results from the failed closure of the neural tube leading to the incomplete development of the neural arches. This case series is part of the Yucatan Crippled Children’s Project that began in 1996 by Charles Southerland, Doctor of Podiatric Medicine and former professor of Barry University’s School of Podiatric Medicine. All patients in this study were assessed and treated at the Red Cross hospital in the city of Merida, Yucatan, Mexico. Attendings, residents and medical students travel to the Yucatan Peninsula four times a year for a period of one week. Given that this study was built from reports of medical mission trips that occur four times a year with limited resources and time, the lack of documentation of treatment plans and follow-ups made it difficult to identify surgical procedures and assess the success of surgeries. Additionally, we did not have access to the patients birth records or their mothers medical records to accurately determine the etiology of their deformities. Based on our data, we conclude that intervention should be considered as early as possible in any flexible deformity to prevent them from becoming rigid.

Keywords: Spina Bifida, talipes equinovarus, clubfoot, adductovarus, calcaneo valgus, Ponseti, osteomyelitis

ISSN 1941-6806
doi: 10.3827/faoj.2020.1304.0008

1 – Fourth Year Medical Student at Barry University School of Podiatric Medicine, Miami, Florida.
2 – Assistant Professor Barry University School of Podiatric Medicine
* – Corresponding author: LARodriguez@barry.edu


Spina Bifida, a rare congenital disorder with an incidence of 7.85 per 10,000 births in Mexico. It results from the failed closure of the neural tube leading to the incomplete development of the neural arches [1]. Spina bifida is the result of genetic and non-genetic factors that interfere with the folding and closure of the neural tube. In its most severe form, meningomyelocele, the neurons of the spinal cord are exposed to amniotic fluid resulting in neuronal death. In addition, the spinal cord and meninges protrude through the midline bony defect of the back [2].

The clinical manifestation of a meningomyelocele is dependent on the spinal level of involvement and the presence of cerebral involvement and hydrocephalus [3]. Sensory and motor impairments are commonly present below the level of the lesion causing alterations in the bowel and bladder function, muscle paresis and paralysis, and sensory loss. Impairment is classified by the level of neurosegmental involvement determined by the strength of specific muscle groups [3]. Nearly all patients with spina bifida will experience manifestations in their feet, especially those cases involving the thoracic and lumbar spinal regions [4,5]. Previous studies have reported that the most common manifestation of spina bifida in the feet are talipes equinovarus, equinus, vertical talus, calcaneal deformities, and cavovarus [4,6,7]. The aim of this study is to analyze the incidence of various distal lower extremity manifestations and their long-term effects on spina bifida patients of the Yucatan Peninsula.

Methods

This case series is part of the Yucatan Crippled Children’s Project that began in 1996 by Charles Southerland, Doctor of Podiatric Medicine and former professor of Barry University’s School of Podiatric Medicine [8]. All patients in this study were assessed and treated at the Red Cross hospital in the city of Merida, Mexico. Attendings, residents and medical students travel to the Yucatan Peninsula four times a year for a period of one week.

From 1999 to 2020, we retrospectively analyzed 1,489 patients that were seen by physicians from the Yucatan Crippled Children’s Project. Among the total, we identified 25 patients, 17 male and 8 female, with history of Spina Bifida and concomitant lower extremity deformities. From the 25 patients, 15 patients had bilateral lower extremity deformities and 10 patients had unilateral deformities, leading to a total of 40 limbs. The ages ranged from 3 months old to 43 years old, with a total average age of 11.33 years. The mean age for rigid deformities was 15.4 years, while the mean age for flexible deformities was 8.8 years.

We analyzed 3 cases of patients with a history of spina bifida and lower extremity deformities according to the clinical notes collected from the Yucatan Crippled Children’s Project.

Case Presentation 1

Case 1 is a 2-year-old male who presented to the Yucatan Crippled Children’s project clinic in March of 2007 with a chief complaint of difficulty ambulating. Patient’s family reports past medical history of birth at 38 weeks and significant time spent in the NICU due to hydrocephalus and spina bifida. Upon initial assessment, the patient was alert and oriented and showed no additional symptoms. Patient was diagnosed with bilateral flexible clubfoot deformity, as seen in Figures 1 and 2. Considering the age and the flexibility of the deformity, the conservative Ponseti serial casting technique was performed on the patient.

Figures 1 and 2 Plantar and dorsal views of bilateral clubfoot prior to Ponseti method.

Figures 3 and 4 Patient at 12 years old, 10 years after Ponseti method. AP Radiograph of bilateral feet. Pre-operative clinical picture of bilateral feet.

Figures 5, 6, 7 Intraoperative picture of left foot before and after external fixator application. AP radiograph of left foot.

The patient and his family were instructed to follow – up with the local doctor. The patient returned to the clinic in November of 2017, at 12 years old, with chief complaint of continued difficulty ambulating due to the progression of the windswept deformity (Figures 3 and 4). After assessment, the left foot was diagnosed with adductovarus and talipes equinovarus deformity. The right foot was diagnosed with forefoot adduction, midfoot abduction, and calcaneovalgus which are the three components of complex skew foot. Given the Ponseti technique applied ten years ago had failed, the deformity has worsened and progressed from flexible to rigid. The procedure consisted of application of external fixation with medial motor for gradual correction of adductovarus deformity on the left foot (Figures 5-7).

Figure 8 Bilateral flexible cavovarus deformity with ulcer on dorsolateral aspect of right foot.

Figures 9 and 10 Nine year follow-up shows rigid bilateral cavovarus deformity. The patient is confined to a wheelchair.

The patient presents to the clinic in February of 2018 for a 3 month postoperative visit after application of external fixation. It was noted that the toes were not fixated during the external fixator surgery and they developed flexion contractures within the reduction frame. The patient developed clinodactyly of all five digits of the left foot. At this date, the frame was removed and the patient began physical therapy in an attempt to reduce flexion contractures.

Case Presentation 2

Case 2 is an 8-year-old female with a past medical history of spina bifida and sensory neuropathy bilaterally. The patient presented to the clinic in July of 2011 with a chief complaint of a wound on the right foot. Upon physical exam, an open ulcer was noted on the dorsolateral aspect of the right foot along the cuboid-5th metatarsal joint (Figure 8). The wound has a beefy red base with friable granulation tissue and a circumferential macerated periwound with suspected areas of hyperkeratotic tissue. Mild hyperpigmentation and erythema is noted proximally towards the dorsum of the ankle. The patient was diagnosed with a pressure ulcer on the right foot and bilateral flexible cavovarus deformity. Ulcer was managed during the patient’s first visit prior to any surgical intervention. Upon healing of the ulcer, surgery was performed; however, the surgical technique was not recorded.

The patient was virtually contacted during Covid-19 2020 Pandemic, and sent Figures 9 and 10. The patient stated she still has insensate feet and is unable to ambulate. Deformity has progressed to rigid and she is waiting until the next Yucatan Medical Mission Trip to possibly undergo another surgery that would allow her to ambulate.

Case Presentation 3

Case 3 is a 24-year-old male with a past medical history of spina bifida, insensate feet, and chronic lymphangitis. The patient presented to the Yucatan Project Clinic in April of 2005 with a chief complaint of wounds on the right foot. Upon physical exam, ulcer on the lateral aspect of the head of the 5th metatarsal of the right foot was noted to have a 50/50 granular fibrotic base with slough in the center. The periwound consisted of hyperkeratotic tissue on the plantar aspect of the 5th metatarsophalangeal joint. Hyperpigmentation is present extending proximally on the dorsum of the foot. The second wound, located on the lateral aspect of the 5th metatarsal tuberosity of the right foot, appeared to have 75/25 fibrotic granular base with regular borders. The patient was diagnosed with active infected ulcers and bilateral cavovarus deformity (Figures 11 and 12). Initial treatment consisted of ulcer debridement and offloading of the right foot with a 3D Walker. The patient was seen in November of 2005, 7 months after initial treatment. The right foot still remained dysfunctional with chronic non-healing wounds. Radiographs show radiolucency from mid-shaft of 4th and 5th metatarsal distally to the 4th and 5th distal phalanges and thickened periosteum of the proximal end of the mid shafts of 4th and 5th metatarsals on Figure 13, suggesting osteomyelitis.

Figures 11 and 12 Dorsolateral view of right foot showing ulcer along 5th metatarsal and medial view of the right foot showing cavovarus deformity.

Figure 13 AP Radiograph of bilateral feet.

Figures 14 and 15 Preoperative view of the right foot. Intraoperative picture of the right foot after Lisfranc amputation.

Figure 16 Dorsolateral view of right foot after amputation.

Due to the lack of access to other diagnostic tools, combined with the request from the patient for a permanent solution, a LisFranc amputation was performed on the right foot and osteoset beads with vancomycin were inserted to treat the infection (Figures 14 and 15).

The patient was seen in February of 2006, 3 months after LisFranc amputation of the right foot. The surgical site healed well with good results (Figure 16). However, the cavovarus deformity remained on the left foot (Figure 17).

The patient was seen again in November of 2006 for the last time, 12 months after LisFranc amputation of the right foot. The patient redeveloped an equinus deformity of the right foot and ulcers under styloid processes bilaterally (Figure 18). The patient was treated with well-padded plastazote ankle foot orthosis (AFO).

Figure 17 Dorsolateral view of left foot.

Figure 18 Ulcer under styloid process of the right foot after amputation.

Results

The most common lower extremity manifestation was ulcerations. In 17 ulcerated limbs, 8 were insensate and 5 developed osteomyelitis. Out of the 40 limbs, 5 ulcerated limbs had no reported gross deformity, and therefore were not included in the graphs. The remaining 35 limbs were biomechanically classified as rigid and flexible. In the 13 rigid limbs, there were 4 equinus, 3 talipes calcaneus, 7 cavus, and 2 planus feet. These were further subclassified into 6 more categories: equinovarus, pes cavocalcaneus, cavovalgus, cavovarus, pes planovalgus and no additional deformity. Rigid deformities subgroups can be seen in Graph 1. In the 22 flexible limbs, there were 9 equinus, 5 talipes calcaneus, 6 cavus, and 2 planus feet.

Graph 1 Rigid deformity of the foot.

Graph 2 Flexible deformity of the foot.

They were then subclassified into 5 more categories: calcaneovalgus, calcaneovarus, equinovarus, cavovarus, and no additional deformity. Flexible deformities are illustrated in Graph 2.

Discussion

Lower extremity manifestations due to spina bifida are difficult to be classified and the rate of misdiagnosis and mistreatment is high [9]. Similarly to previous findings, the most frequent foot deformity in our study was flexible equinus [4,5,10]. However, we found that rigid pes cavus was the second most predominant foot deformity in the Yucatan Peninsula, contrary to previous reports. Based on the limited medical access in the area and the higher average age of patients presenting with rigid deformities (15.4 years) when compared to flexible deformities (8.8 years), we suggest that this is possibly due to years of leaving the deformity untreated.

The prevalence of spina bifida was 7.85 per 10,000 births or 0.0785% in the country of Mexico [1]. However, in the Yucatan Peninsula the prevalence was found to be significantly higher. In this study, out of the 1,489 total cases analyzed from years 1999 to 2020, 25 patients with spina bifida were identified. This shows a prevalence rate of 167.90 per 10,000 births or 1.68%. Folic acid is a nutrient that is essential to the development of the fetus. Spina bifida and other birth defects form within the initial 28 days after conception. These congenital deformities can be prevented by ensuring sufficient blood folate levels in the mother during fertile years and early fetal development [11]. In the literature, North America has been shown to have the lowest incidence of spina bifida while Asia has the highest incidence. This could be due to Canada and the United States being the first countries to mandate folic acid fortification. In addition, even though mandatory fortification with folate has been implemented in many countries, it might not be enough folic acid to reach the daily recommended dosage of 400 micrograms. Therefore, it is important for mothers before conception and in the early fetal developmental months to supplement their folic acid intake [12].

Case 1 illustrated a patient with talipes equinovarus, also known as clubfoot deformity on the left foot. This triplanar deformity includes 3 components: ankle equinus, hindfoot varus, and forefoot adduction. Traditionally, there is a higher prevalence of clubfoot in males with a ratio of 2:1 to female and approximately 50% of the cases are bilateral. A few etiologies have been described in the literature, mainly divided into idiopathic and non-idiopathic. Idiopathic consists of limited intrauterine position due to a larger size of the fetus or smaller frame of mothers, while non-idiopathic includes a history of congenital deformities such as spina bifida, cerebral palsy, and meningitis. Clinical presentation of patient 1 at birth predisposed him to a higher risk of developing clubfoot given he is a male with a history of spina bifida. We do not have additional history of patient 1 such as birth weight and height, however, these factors could have also played a role in the patient developing clubfoot [13]. The Ponseti technique, a conservative treatment, was attempted when the patient was 2 years old; however, this technique is only proven to be successful in patients with flexible clubfoot up to 120 days of age [14]. On the right foot, the patient has had a long-standing complex skewfoot with forefoot adduction, midfoot abduction, and calcaneovalgus. The unsuccessful result of the Ponseti method on the left foot, combined with years of the patient not returning for medical assistance, led the bilateral deformity to become rigid on both feet.

Case 2 presented a 2-year-old female with history of spina bifida, insensate feet, active ulcer on the right foot, and flexible bilateral cavovarus deformity. Cavovarus involves a high longitudinal plantar arch, hindfoot varus, forefoot equinus, and pronated first ray in the stance phase of gait. If this deformity is present bilaterally, the most likely etiology is a neurological condition; however, if it is present unilaterally the etiology can be related to trauma such as pilon fractures or talar neck fractures [15]. In a flexible cavovarus foot, surgical correction could be achieved through extensive plantar release and metatarsal osteotomies. However, at the time of the patient’s first visit, physicians from the Yucatan Project prioritized the management of the ulcer prior to correcting any gross deformity. Due to the long period of treatment for ulcer management and limited medical access in the Yucatan Peninsula, the patient did not seek medical help for many years. Recent literature has described that if left untreated, cavovarus deformity can progress into fibrosis of the plantar fascia, shortening and tightening of the achilles tendon leading to excess pressure under metatarsal heads, overloading of the lateral aspect of the foot leading to stress fractures of the 5th metatarsal and more rarely, the cuboid. In addition, it can cause inadequacy of the lateral ligaments and tendons leading to instability of anterolateral ankle and lateral talus [15]. During the 2020 Covid-19 pandemic, we reached out through social media and discovered the patient was no longer ambulating. The patient described a rigid deformity with insensate feet and showed interest in undergoing another surgery, so she could possibly walk again. In a mature foot, surgical intervention might require aggressive techniques including midtarsal osteotomies, calcaneal osteotomies and triple arthrodesis [16]. Final decision for a surgical procedure will only be done in person once full updated history and radiographs are taken.

Case 3 showed the most severe result that could come from insensate lower extremity in spina bifida patients if left untreated for long periods of time: amputation. This patient was first seen at 24 years old, when his rigid cavovarus deformity was present since birth. This deformity caused chronic non-healing wounds that developed into osteomyelitis. Osteomyelitis can be defined as an infectious agent which causes inflammation of the bone. The hallmark of chronic osteomyelitis is the progression of inflammation to tissue necrosis and destruction of bone trabeculae and bone matrix caused by an infectious agent. This is usually accompanied by fragments of bone lacking blood supply which can become separated to form sequestra and continues to host and spread bacteria despite antibiotic treatment. The fifth metatarsal, first metatarsal, calcaneus, and first digit distal phalanx are the four structures with the highest incidence of developing osteomyelitis in the foot [17]. This case emphasizes the need of spina bifida patients with concomitant lower extremity deformities to seek medical help at a young age to avoid the progression of the deformity and consequently loss of a limb.

Given that this study was built from reports of medical mission trips that occur four times a year with limited resources and time, the lack of documentation of treatment plans and follow-ups made it difficult to identify surgical procedures and assess the success of surgeries. Additionally, we did not have access to the patients birth records or their mothers medical records to accurately determine the etiology of their deformities.

Conclusion

The types of foot and ankle deformities seen in spina bifida are diverse in etiology, age and gender of the patients. We discovered the most common lower extremity manifestations of spina bifida in the Yucatan Peninsula are flexible equinus and rigid pes cavus. The mean age of patients with rigid deformities was almost twice as the mean age of the patients with flexible deformities. Zang, et al., concluded that equinovarus requires immediate treatment while valgus deformities can have delayed intervention [15]. Based on our data, we conclude that intervention should be considered as early as possible in any flexible deformity to prevent them from becoming rigid.

Acknowledgements

We would like to thank all attendings, residents and students involved in the Yucatan Crippled Children Project along with the International Foot & Ankle Foundation for Education and Research. Additionally, we would like to thank the local Red Cross Hospital in the city of Merida.

References

  1. Gunay H, Sozbilen MC, Gurbuz Y, Altinisik M, Buyukata B. Incidence and type of foot deformities in patients with spina bifida according to level of lesion. Childs Nerv Syst. 2016;32(2):315-319. doi:10.1007/s00381-015-2944-7.
  2. Swaroop VT, Dias L. Orthopaedic management of spina bifida-part II: foot and ankle deformities. J Child Orthop. 2011;5(6):403-414. doi:10.1007/s11832-011-0368-9.
  3. Sharrard WJ, Grosfield I. The management of deformity and paralysis of the foot in myelomeningocele. J Bone Joint Surg Br. 1968;50(3):456-465.
  4. Atta CA, Fiest KM, Frolkis AD, et al. Global Birth Prevalence of Spina Bifida by Folic Acid Fortification Status: A Systematic Review and Meta-Analysis. Am J Public Health. 2016;106(1):e24-e34. doi:10.2105/AJPH.2015.302902.
  5. Frischhut B, Stöckl B, Landauer F, Krismer M, Menardi G. Foot deformities in adolescents and young adults with spina bifida. J Pediatr Orthop B. 2000;9(3):161-169. doi:10.1097/01202412-200006000-00005.
  6. Krähenbühl N, Weinberg MW. Anatomy and Biomechanics of Cavovarus Deformity. Foot Ankle Clin. 2019;24(2):173-181. doi:10.1016/j.fcl.2019.02.001.
  7. Westcott MA, Dynes MC, Remer EM, Donaldson JS, Dias LS. Congenital and acquired orthopedic abnormalities in patients with myelomeningocele. Radiographics. 1992;12(6):1155-1173. doi:10.1148/radiographics.12.6.1439018.
  8. Yucatán Crippled Children’s Project. (2012). Retrieved from (https://www.internationalfootankle.org/philanthropy/crippled-childrens-project/).
  9. Mandell JC, Khurana B, Smith JT, Czuczman GJ, Ghazikhanian V, Smith SE. Osteomyelitis of the lower extremity: pathophysiology, imaging, and classification, with an emphasis on diabetic foot infection. Emerg Radiol. 2018;25(2):175-188. doi:10.1007/s10140-017-1564-9.
  10. Cavalheiro S, da Costa MDS, Moron AF, Leonard J. Comparison of Prenatal and Postnatal Management of Patients with Myelomeningocele. Neurosurg Clin N Am. 2017;28(3):439-448. doi:10.1016/j.nec.2017.02.005.
  11. McCluskey WP, Lovell WW, Cummings RJ. The cavovarus foot deformity. Etiology and management. Clin Orthop Relat Res. 1989;(247):27-37.
  12. Feldkamp, M., Sanchez, E., & Canfield, M. (2014). International Clearinghouse of Birth Defects Surveillance and Research – Annual Report 2014.
  13. Awang M, Sulaiman AR, Munajat I, Fazliq ME. Influence of Age, Weight, and Pirani Score on the Number of Castings in the Early Phase of Clubfoot Treatment using Ponseti Method. Malays J Med Sci. 2014;21(2):40-43.
  14. Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM. Spina bifida. Nat Rev Dis Primers. 2015;1:15007. Published 2015 Apr 30. doi:10.1038/nrdp.2015.7.
  15. Zang J., Qin S., Shi L. (2020) Lower Limb Deformity Caused by Spina Bifida Sequelae and Tethered Cord Syndrome. In: Qin S., Zang J., Jiao S., Pan Q. (eds) Lower Limb Deformities. Springer, Singapore.
  16. Kancherla V. Countries with an immediate potential for primary prevention of spina bifida and anencephaly: Mandatory fortification of wheat flour with folic acid. Birth Defects Res. 2018;110(11):956-965. doi:10.1002/bdr2.1222.
  17. Broughton NS, Graham G, Menelaus MB. The high incidence of foot deformity in patients with high-level spina bifida. J Bone Joint Surg Br. 1994;76(4):548-550.

 

‘Fast Casts’: Evidence Based and Clinical Considerations for Rapid Ponseti Method

by April Sutcliffe1, Kolini Vaea2, John Poulivaati2, Angela Margaretpdflrg Evans3,4

The Foot and Ankle Online Journal 6 (9): 2

The Ponseti method of correction of congenital clubfoot is recognized as the preferred management technique for this pediatric deformity. The original method has been subtly modified over time in response to clinical experience and research findings. Most recently, two randomized controlled trials have shown that less time is needed for each serial cast immobilization. Clinical cases from the Kingdom of Tonga are presented to illustrate the clinical use of more rapid plaster cast changes – the ‘fast casts’ modification incorporating increased manual manipulation time, within the Ponseti method. The Pirani score was used to monitor the clubfoot correction between each plaster cast change for each baby. In all feet the Pirani scores reduced sequentially with shorter periods of casting. Shorter duration of cast immobilization – ‘fast casts’ – can be used with many advantages for the clinical setting. Less time in plaster can at least halve the corrective phase of Ponseti management without compromising results. In addition, there are possible benefits for families from distant locations, for babies being less prone to skin irritations, and less difficult day-to-day baby care related to long leg plaster casts. These factors may benefit compliance and overall treatment outcomes.

Key words: clubfoot, Ponseti, pediatric, foot

Accepted: August, 2013
Published: September, 2013

ISSN 1941-6806
doi: 10.3827/faoj.2013.0609.002


Address correspondence to: Department of Podiatry, Lower Extremity and Gait Studies (LEGS) Research Program, La Trobe University, Bundoora, Melbourne, Australia. Email: angela.evans@latrobe.edu.au

1Sydney Children’s Hospital, High Street, Randwick, Sydney, Australia
2Vaiola Hospital, Tonga
3Department of Podiatry, Lower Extremity and Gait Studies (LEGS) Research Program,
La Trobe University, Bundoora, Melbourne, Australia
4Health and Rehabilitation Research Institute, AUT University, Auckland, New Zealand


The Ponseti method has taken the developed world by storm in the last decade, becoming acknowledged as the optimal treatment for congenital clubfoot deformity.[1,2]

Cited as the most significant and potentially debilitating congenital pediatric orthopaedic deformity, talipes equino varus, has littered the pages of historic tomes, medical journals and textbooks alike.[3] The Egyptian boy king, Tutankhamen; the tragic poet, Lord Byron; and celebrated stage and screen actor, Dudley Moore; eponymously all male, were born and/or lived with clubfoot deformity. [4]

Whilst management with splints, binding, and plaster casts has been evident across the hundreds and thousands of years in which clubfoot deformity is referenced, the 20th century saw such conservative measures subsumed by surgical correction, and notably the posterior medial release (PMR). [5-7] The PMR is a joint invasive procedure, which also severs to lengthen, all the soft tissue structures found contracted on the medial and posterior aspects of the infant clubfoot.[8]

In the 21st century, surgical correction of clubfeet has been firmly denounced.[9] Both retrospective concerns and reviews, and prospectively designed studies have shown the poor outcomes, in terms of pain and function, resulting from the PMR and akin surgical procedures.[7]

Simultaneously, the Ponseti method, developed and named after the orthopedic specialist Ignacio Ponseti[10], has been investigated both retrospectively and in many prospective randomized controlled trials (RCTs), and found not only to give the best clinical outcomes, but to also be a more economical management, when compared to surgery – the rare health care setting finding of a ‘win:win’.[11]

Much investigation of Ponseti’s original method has occurred in the last decade.[7,12,13] Whilst it’s superior outcomes for management of congenital clubfoot has met with universal consensus, this has also resulted in considerable refinement of the technique.[11,14,15]

The original Ponseti method

The duration of each serial plaster cast, a fundamental aspect of the basic weekly casts which made up the original Ponseti method[16] now has good evidence for amendment.

The original method described by Ponseti involves a series of plaster casts changed weekly for a period of five to six weeks, followed by percutaneous elongation of the Achilles tendon and application of a final cast for three weeks. The foot abduction bracing phase, is commenced immediately after the post tenotomy cast is removed.

There is now strong evidence to suggest that accelerated frequency of cast changes has comparable outcomes to those of the original Ponseti method.[17] with the benefit of limiting time spent is casts during the corrective phase of treatment.

The evidence for, and implication of, ‘fast casts’

It was first revealed that casts changed every five days, instead of the originally prescribed seven days, gave the same results – potentially saving ten to 12 days in the initial casting phase.[18] Two more recent RCTs have shown that casts changed twice (even three times) each week attain the same correction as weekly casts. [17, 19]

The halving of the casting phase from an average six weeks to three weeks, without compromising results, has clear advantages. Less time immobilized in plaster casts is intuitively preferable for the baby, and their parents or caregivers. Shorter durations of each corrective cast reduces the likelihood and extent of undetected skin pressure lesions, and at least halves the overall corrective phase, such that babies commence the (virtually) full-time boots and bar phase over three months, at a younger and possibly more amenable age. With the consistently demonstrated and positive correlation between successful use of the maintenance boots and bar, and lessened relapse of clubfoot correction – starting the boots and bar habit earlier within the rapid development that hallmarks infancy – may be more helpful than at first glance considered.[20-22]

How can the notion of ‘fast casts’ be applied clinically, and what are the possible pitfalls as well as benefits?

Illustrative use of the ‘fast casts’ technique

Two cases from Tonga, the country with the world’s highest incidence of congenital clubfoot deformity[23], are included in this review. In Tonga, a pacific island country geographically comprised of numerous islands, clinical use of the ‘fast casts’ method facilitates coordination with the availability of surgical expertise to perform Achilles tenotomies, as well as accelerated progress of babies through the casting stage. Both of the case-study babies were cast and re-cast four times in one week. This is more rapid and intense than might normally occur due to the visit from the off-shore surgeon occurring the following week (the local surgeon has now undertaken training for tenotomy procedures).

Fig 1 Baby J

Figure 1 Baby J, whose data is presented in table 2.

Table1

Table 1 Baby J – left congenital clubfoot. The use of ‘fast casts’ saw this baby’s corrected and ready for the tenotomy procedure after six days (4 casts).

Fig 2 Baby S

Figure 2 Baby S, whose data is presented in table 3.

Table2

Table 2 Baby S – bilateral congenital clubfeet. The use of ‘fast casts’ corrected the cavus and adduction of the clubfoot deformity, but made no change to the equinus component, which required the tenotomy for correction (as indicated by the initial Pirani score).

As the Tables 1 and 2 show, both babies showed consistent correction of their foot deformity with manipulation and casting. (Fig. 1 and 2) The Pirani scores reduced consistently within the initial corrective phase, showing the value of using this demonstrably reliable and objective measure. Further, the initial Pirani scores of 5 and 5.5 respectively, heralded the very likely need for tenotomies.[24] Indeed, the hindfoot scores equaled or approximated the total Pirani scores after the casting phase, signaling the residual equinus aspect of the deformity. It must be stated that similarly to the findings of the clinical trial by Xu et al[17], that these Tongan cases also underwent ‘more rather than less’ manipulation prior to casting. Whilst the effect of manipulation time has not been formally studied, histological investigation directs maintained loading of ligaments to promote the lengthening or ‘uncrimping’ of these structures.[25] Might it be that more attention to, and time spent, carefully manipulating clubfoot correction is able to render cast time less relevant?

Considerations, variations, and further questions

There are many factors to consider when contemplating the use of ‘fast casts’ as part of the Ponseti clubfoot correction method.

Firstly, there is now very good evidence to support shortening cast time[17] for the typical, congenital clubfoot deformity.

Secondly, the convenience for parents travelling with infants to distant clinics for treatment which necessitates time away from home, work, and family, a common occurrence in developing countries, may be greatly improved.[26-28] If, as on average, a baby requires six casts, the time away from home/work may be reduced from six weeks to two weeks. This could provide great savings for costs incurred whilst living away from home, and time lost from work. In turn, compliance may also benefit.

Thirdly, less time immobilized in plaster is probably advantageous for the baby in terms of reduced skin sore issues, easier bathing, more normal motor development and possibly lessens the risk of osteopenia.[29]

Notable in the current findings on faster casting is the longer manipulation time, (two minutes) specified by Xu, et al., [17], an additional departure from the original Ponseti protocol, and also the long follow up time of this study, as opposed the otherwise similar Malawi trial.[19]

It is important to appreciate that all accelerated casting studies and trials have addressed the typical congenital clubfoot, and that the effects and use in syndromic[11] or complex clubfoot types[30] are unknown.

The application of best available evidence to any health care setting is important, particularly if there are clear benefits to the recipients of this care. The rescheduling of the weekly clubfoot clinic for casting, to at least twice weekly, is now a possible shift in contemporary evidence based practice.

Conclusions

The Ponseti method continues to be the best approach to correction of the typical congenital clubfoot. There is now high-level evidence to support changing casts after three days or less, which greatly reduces the time infants spend immobilized in plaster.

The pre-casting manipulation is important and indications are that more time spent may be beneficial in correcting the clubfoot deformity.

In developing countries where travelling to clinics necessitates time away from home, work, and family, the adoption of ‘fast casts’ can reduce costs to families, and perhaps help to improve compliance and overall outcomes.

References

1.           Steinman S, Richards BS, Faulks S, Kaipus K. A comparison of two nonoperative methods of idiopathic clubfoot correction: the Ponseti method and the French functional (physiotherapy) method. Surgical technique. JBJS 2009 91A (Suppl 2): 299-312. [PubMed]
2.           Carroll NC. Clubfoot in the twentieth century: where we were and where we may be going in the twenty-first century. J Pediatr Orthop 2012 21: 1-6. [PubMed]
3.           Dobbs MB, Morcuende JA, Gurnett CA, Ponseti IV. Treatment of idiopathic clubfoot: an historical review. Iowa Orthop J 2000 20: 59-64. [PubMed]
4.           Anand A, Sala D. Clubfoot: Etiology and treatment. Indian J Orthop 2008 42: 22-28.  [PubMed]
5.           Manzone P. Clubfoot surgical treatment: preliminary results of a prospective comparative study of two techniques. J Pediatr Orthop 1999 8: 246-250. [PubMed]
6.           Zionts LE, Zhao G, Hitchcock K, Maewal J, Ebramzadeh E. Has the rate of extensive surgery to treat idiopathic clubfoot declined in the United States? JBJS 2010 A92: 882-889. [PubMed]
7.           Halanski MA, Davison JE, Huang J-C, Walker CG, Walsh SJ, Crawford HA. Ponseti method compared with surgical treatment of clubfoot: a prospective comparison. JBJS 2010 A92: 270–278. [PubMed]
8.           Laaveg S, Ponseti I. Long-term results of treatment of congenital club foot. JBJS 1980 62A:23-31. [PubMed]
9.           Morcuende J, Dolan L, Dietz F, Ponseti I. Radical reduction in the rate of extensive corrective surgery for clubfoot using the Ponseti method. Pediatrics 2004 113: 376-80. [PubMed]
10.         Ignacio Ponseti [Internet]. Wikipedia. [cited 2013 Jan 29]. Available from: http://en.wikipedia.org/wiki/Ignacio_Ponseti 
11.         Dobbs MB, Gurnett CA. Update on clubfoot: etiology and treatment. Clin Orthop and Rel Res  2009 467: 1146-1153. [PubMed]
12.         Niki H, Nakajima H, Hirano T, Okada H, Beppu M. Ultrasonographic observation of the healing process in the gap after a Ponseti-type Achilles tenotomy for idiopathic congenital clubfoot at two-year follow-up. J Orthop Sci 2013 18: 70-75. [PubMed]
13.         Carroll N. Editorial: Clubfoot: What Have We Learned in the Last Quarter Century? J Pediatr Orthop 1997 17: 1-7.  [PubMed]
14.         Rijal R, Shrestha BP, Singh GK, Singh M, Nepal P, Khanal GP, Rai P. Comparison of Ponseti and Kite’s method of treatment for idiopathic clubfoot. Indian J Orthop 2010 44: 202-207. [PubMed]
15.         Andriesse H, Roos EM, Hägglund G, Jarnlo G-B. Validity and responsiveness of the Clubfoot Assessment Protocol (CAP). A methodological study. BMC Musculoskelet Disord 2006 7: 28. [PubMed]
16.         Ponseti I. Clubfoot management. J Pediatr Orthop 2000 20: 699-700.[PubMed]
17.         Xu RJ. A modified Ponseti method for the treatment of idiopathic clubfoot: a preliminary report. J Pediatr Orthop 2011 31: 317-319. [PubMed]
18.         Morcuende J, Abbasi D, Dolan L. Results of an accelerated Ponseti protocol for clubfoot. J Pediatr 2005 25: 623-625. [PubMed]
19.         Harnett P, Freeman R, Harrison WJ, Brown LC, Beckles V. An accelerated Ponseti versus the standard Ponseti method: a prospective randomised controlled trial. JBJS 2011 B93: 404-408. [PubMed]
20.         Garg S, Porter K. Improved bracing compliance in children with clubfeet using a dynamic orthosis. J Children’s Orthopaedics 2009 1: 271-276. [PubMed]
21.         Boehm S, Sinclair M. Foot abduction brace in the Ponseti method for idiopathic clubfoot deformity: torsional deformities and compliance. J Pediatr Orthopaedics 2007 27: 712-716. [PubMed]
22.         Ippolito E, Fraracci L, Farsetti P, Di Mario M, Caterini R. The influence of treatment on the pathology of club foot. CT study at maturity. JBJS 2004 B86: 574-580. [PubMed]
23.         Chapman C, Stott NS, Port RV, Nicol RO. Genetics of club foot in Maori and Pacific people. J Med Genet 2000 37: 680-683. [PubMed]
24.         Shack N, Eastwood D. Early results of a physiotherapist-delivered Ponseti service for the management of idiopathic congenital talipes equinovarus foot deformity. JBJS 2006 88: 1085-1089. [PubMed]
25.         Ponseti I. Treatment of congenital club foot. JBJS 1992 74: 448-454.[PubMed]
26.         Pirani S, Naddumba E, Mathias R, Konde-Lule J, Penny JN, Beyeza T,  Mbonye B, Amone J, Franceschi F.Towards Effective Ponseti Clubfoot Care: The Uganda sustainable clubfoot careproject. Clin Orthop Rel Res 2009 467:1154-1163. [PubMed]
27.         Evans AM, Van Thanh D. A review of the Ponseti method and development of an infant clubfoot program in Vietnam. JAPMA 2009 99: 306-316. [PubMed]
28.         Evans AM. Preliminary evaluation of implementing the Ponseti method for correction of clubfoot in Vietnam. J Children’s Orthop 2010 4: 553-559. [PubMed]
29.         Lourenço AF, Morcuende JA. Correction of neglected idiopathic club foot by the Ponseti method. JBJS 2007 89B: 378-381. [PubMed]
30.         Ponseti IV, Zhivkov M, Davis N, Sinclair M, Dobbs MB, Morcuende JA. Treatment of the complex idiopathic clubfoot. Clin  Orthop Rel Res 2006 451:171-176. [PubMed]