Tag Archives: Foot

Divergent Lisfranc injury with dislocation of great toe interphalangeal joint: A rare case report

by Dr. Ganesh Singh Dharmshaktu1*, Dr. Binit Singh2

The Foot and Ankle Online Journal 10 (3): 3

Injury to the Lisfranc joint is an uncommon event and requires keen evaluation to diagnose it early for the optimal outcome following adequate treatment. Many classifications describe the divergent pattern of this injury as separate entity and even rarer in incidence. The associated ipsilateral great toe interphalangeal dislocation along with the rare divergent pattern of Lisfranc fracture dislocation makes our case unusual. The case was managed by reduction of the great toe interphalangeal dislocation with percutaneous reduction and fixation of Lisfranc injury with screws and multiple K-wires, resulting in a good clinical outcome on follow up.  No single case similar to ours is reported previously to the best knowledge of the authors.

Keywords: foot, injury, dislocation, Lisfranc joint, tarsometatarsal joint, interphalangeal, management, fixation

ISSN 1941-6806
doi: 10.3827/faoj.2017.1003.0006

1 – Assistant Professor, Department of Orthopaedics, Government Medical College, Haldwani , Uttarakhand. India.
2 – Assistant Professor, Department of Orthopaedics, Government Medical College, Haldwani , Uttarakhand. India.
* – Corresponding author: drganeshortho@gmail.com

IInjury to the Lisfranc joint (Tarsometatarsal joint) is a rare event with reported incidence of 0.1 to 0.4% of fracture cases [1]. Early identification and meticulous management, often surgical, is required for optimal outcome as the conservative approach has been linked to poor results [2]. Quenu and Kuss did instrumental work to highlight the anatomical and clinical understanding of Lisfranc joint along with description of the “Lisfranc ligament bundle” bridging second metatarsal and first cuneiform bone as key stabilizing structure of tarsometatarsal (TMT) joint [3]. The classification given by the same authors is widely used and it describes three types of the injury; homolateral, isolated and divergent. Divergent dislocation was described as a complete disruption of the TMT joint with first ray and lesser rays displaced in the opposite direction. Another classification by Hardcastle et al modified the abovementioned classification on the basis of radiological evaluation into three types – complete, partial and divergent [4]. Type C or divergent variant was noted with medialisation of first metatarsal and lateral translation of variable number of rest of the metatarsals. The literature is scant about this rare pattern of injury as compared to other types.

Case Report

A 28-year-old male patient was brought to us with a history of injury to his right foot a few hours earlier. There was swelling and pain after the patient sustained an injury to the foot by the jumping off a moving bus. He reported he lost his balance and his foot was twisted before he fell to hard ground. The exact position of the foot at the time of impact is not properly recalled by the patient. There was visible deformity over medial aspect of foot and great toe suggesting presence of underlying significant bony or soft tissue injury. The radiograph of the affected foot showed fracture dislocation of Lisfranc joint along with inter-phalangeal dislocation of ipsilateral first toe. The pattern of Lisfranc injury was divergent with medial dislocation of first TMT joint and lateral dislocation of the rest of the TMT joint (Figure 1). There was also a fracture of the fifth metatarsal base with minimal displacement. Following informed consent, the patient was planned for urgent reduction of aforementioned injury with internal fixation. The rarity of the injury pattern was explained to the patient with additional written consent for future publication.

Figure 1 Preoperative radiograph showing great toe interphalangeal dislocation with divergent Lisfranc fracture dislocation.

The closed reduction of the interphalangeal dislocation was easily achieved under anesthesia which was later confirmed under fluoroscopy and the closed reduction of Lisfranc injury was achieved under fluoroscopic guidance. Two K-wires (2.0 mm) were introduced, one along the second metatarsal into the tarsal bones transfixing the Lisfranc joint. The other K-wire (1.0 mm) was introduced along the lateral TMT joints for added stability. The additional cortical screw (3.5 mm) was used for added stability from medial aspect and fixing the Lisfranc joint (Figure 2). The small wounds were dressed and a well-padded below knee plaster protection splint was applied following the confirmation of satisfactory alignment and fixation of the injuries. Elevation and non-weight bearing protocols were advised. Active toe and knee joint range of motion exercises were encouraged throughout the follow up. Gradual healing of the injury was noted in the follow-up along with reduction of swelling, pain and discomfort. The hardware were sequentially removed between 18-26 months postoperatively (Figure 3). The plaster splint was removed after eight weeks as swelling and pain were minimal. The only complication noted was hardware prominence of the medial screw that loosened over time and later was managed by its removal. The removal of K-wires and screw was uneventful at four and six month follow up. There was no re-dislocation of great toe noted and the patient was performing activities of daily living.

Figure 2 Postoperative radiograph showing the fixation of the Lisfranc injury with K-wire and screw from medial aspect along with reduced interphalangeal dislocation.

Figure 3 The follow up radiograph showing healed Lisfranc injury at the time of final hardware removal.


Meticulous clinical and radiological assessment is critical for the diagnosis of Lisfranc injuries as these are notoriously missed in emergency settings and may be the reason for later medico-legal issues [5]. The divergent dislocation, as in our case, have characteristic radiographic deformity that makes it hard to miss and the diagnosis is evident. The divergent Lisfranc fracture dislocation is stated to be associated with fractures of other bones in the foot like the cuneiforms and navicular [6].The subtle injuries, the doubtful diagnosis and the requirement of looking for interposed structure interfering with reduction calls for use of imaging like computerized tomogram (CT) or magnetic resonance imaging (MRI) [7,8]. Our patient refused further imaging due to financial issues and urgent operative intervention was initiated. Open reduction-internal fixation (ORIF) and primary arthrodesis are two common techniques. Our method with use of closed reduction and percutaneous fixation with wires and screws resulted in primary arthrodesis of Lisfranc joint. The reported incidence of secondary procedures for complications has been found to be minimal with primary arthrodesis [9]. Studies have also shown good outcome of primary arthrodesis in comparison with ORIF in the long term [9,10]. Primary arthrodesis also obviates need for secondary arthrodesis in case of arthritis following either modality of treatment. Our minimal invasive approach resulted in early discharge and avoided wound complications.

Acknowledgement None


  1. Court-Brown CM, Caesar B. Epidemiology of adult fractures. A review. Injury, 2006;37(8):691-697. PubMed  
  2. Myerson MS, Fisher RT, Burgess AR, et al. Fracture dislocations of the tarsometatarsal joints: End results correlated with pathology and treatment. Foot Ankle.1986;6(5):225-242. PubMed
  3. Quenu E, Kuss G. Etude sur les subluxations du metatarse (luxations metatarsotarsiennes) du diastasis entre le 1stet le 2nd metatarsien. Rev Chir(Paris).1909; 39:281-336,720-791,1093-1134.
  4. Hardcastle PH, Reschauer R, Kutscha-Lissberg E, et al. Injuries to the tarsometatarsal joint. Incidence, classification and treatment. J Bone Joint Surg Br.1982;64(3):349-346. PubMed
  5. Chesbrough RM. Strategic approach fends off charges of malpractice: Program provides tips for avoiding litigation. Diagn Imaging 2002;24(13):44-51.
  6. Berquist TH, editor. Trauma. Radiology of the Foot and Ankle. New York: Raven Press, 1989. p. 191-7.
  7. Philbin T, Rosenburg G, Sferra JJ. Complications of missed or untreated Lisfranc injuries. Foot Ankle Clin North Am 2003;8:61-71. PubMed
  8. Kiuru MJ, Niva M, Reponen A, Pihlajamaki HK. Bone stress injuries in asymptomatic elite recruits: a clinical and magnetic resonance imaging study. Am J Sports Med. Feb 2005;33(2):272-276.
  9. Henning JA, Jones CB, Sietsema DL, et al. Open reduction internal fixation versus primary arthrodesis for lisfranc injuries: A prospective randomized study. Foot Ankle Int. 2009;30(10):913-922. PubMed
  10. Ly TV, Coetzee JC. Treatment of primarily ligamentous Lisfranc joint injuries: primary arthrodesis compared with open reduction and internal fixation. A prospective randomized study. J Bone Joint Surg Am.2006;88(3):514-520. PubMed

Atraumatic acute compartment syndrome secondary to group C Streptococcus infection

by Amelia Aaronson1*, Malcolm Podmore1, Richard Cove1pdflrg

The Foot and Ankle Online Journal 9 (4): 4

A 74 year-old female presented to the emergency department with sudden onset severe foot pain and was diagnosed with an acute, atraumatic compartment syndrome. The patient had urgent surgical decompression and washouts in theatre. Microbiological samples grew group C hemolytic Streptococcus; she was treated with high dose intravenous antibiotics and made a good recovery.

Keywords: atraumatic compartment syndrome, foot, group C hemolytic Streptococcus

ISSN 1941-6806
doi: 10.3827/faoj.2016.0904.0004

1 – North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB
* – Corresponding author: amelia.aaronson@nhs.net

This case is important for two reasons; Firstly, because regardless of cause, compartment syndrome is a surgical emergency and is a diagnosis which requires early recognition and appropriate treatment. Secondly and most important, because it is an unusual presentation and pathophysiology of compartment syndrome. Cases of atraumatic compartment syndrome have been reported previously [1], with causes including reperfusion injuries, bleeding, animal toxins, and intravenous drug use [2], and have been reported in the literature [1], but the majority of acute cases are due to trauma. When searching the literature for infectious causes, there are even fewer cases [3,4], and no cases have been previously described due a group C Streptococcus infection.

Case Presentation

A 74 year-old female presented to A&E with a five-hour history of acute left foot pain, which had increased in severity to a subjective 10/10 and required intravenous morphine and nitrous oxide. The patient described pain all over her left foot, especially the big toe and dorsum of the foot. There was no history of trauma, the patient was systemically well, and had no other notable symptoms.

Past medical history included hypertension, atrial fibrillation, and a previous laparoscopic cholecystectomy. The patient had no known drug allergies, and her only medication was 5 mg Ramipril QD. The only relevant family history was gout.

On examination the patient’s foot was swollen throughout the dorsal and plantar aspect, slightly warm to touch, and extremely tender to palpation. There was acute pain with all passive movements of the foot and toes, and ankle movements were restricted due to pain. The foot exhibited no neurovascular compromise and had no lacerations or wounds. She was afebrile, and observations were all normal.


On admission white cell count was 13.5/mL and C-reactive protein 10 mg/L. Other blood values (including uric acid and creatine phosphokinase) were normal.

Left foot radiographs revealed no acute abnormalities, and an MRI showed a large amount of high signal over the dorsum of the foot. However, only one long axis STIR sagittal acquisition was obtained due to patient discomfort and difficulty remaining still.

The patient was referred to the trauma and orthopedics team due to severe pain out of proportion to the history, where the differential diagnosis included infection and compartment syndrome.


Despite an inconclusive MRI, due to a high clinical suspicion of compartment syndrome the patient went to surgery the same day for a fasciotomy of her left foot. Due to dorsal swelling and the MRI result, the four interosseous compartments were decompressed through two dorsal incisions. The compartments deep to these were decompressed through the same incisions. The muscles appeared viable, there was no collection, and a small amount of fluid was found in the lateral deep compartment. This fluid was sent for microbiological analysis, and the wound was left open with a vacuum dressing and the leg kept elevated post-operatively.

Outcome and Follow-Up

The patient’s pain was much improved postoperatively; nerve blocks were not performed. Two days later the patient’s pain increased, this time more focussed on the medial foot. She was taken back to surgery for a medial fasciotomy to release the medial compartment. The muscles were viable, with no suggestion of infection.

Despite this, the patient began to spike temperatures and had high inflammatory markers. CRP peaked on day 5 at 474 mg/L, although white cell count did not rise higher than the admission level. Cultures of fluid from both fasciotomies grew group C hemolytic Streptococcus. It was therefore thought that this patient’s compartment syndrome was secondary to infection – although there was no history of any wound or animal bite, and on examination no entry site for infection had been found. She was treated with intravenous amoxicillin, initially 1g TID, which was later increased to 2g QID on day ten of admission.

Three days later she had a planned third surgery. The medial wound was clean and therefore closed, but the two dorsal wounds were irrigated with saline and left open. Four days after this the patient had a planned fourth surgery with the medial wound healing, and the dorsal wounds had no pus although the dorsum was still very swollen. The wounds were washed out and left to heal by secondary intention.

A repeat MRI was performed on day twelve because of persistently high inflammatory markers, which showed no evidence of soft tissue or intraosseous collection. She continued high dose intravenous antibiotics, and started to recover. CRP tailed off following this, and her pain settled. The patient was discharged after a twenty-five day admission with outpatient follow up.


Compartment syndrome is caused by an increase of pressure in a closed compartment bounded by fascia and bone  compromising vascular supply to that compartment. It is usually due to bleeding or edema secondary to trauma or reperfusion injury [5,6] and can be acute or chronic. The majority of acute cases are secondary to trauma [7] including fractures, crush injuries and surgery [8]. A study looking at causation showed that the most common cause in over two-thirds of patients was fracture, followed by soft tissue injury and then bleeding disorder or use of oral anticoagulants [9]. Other causes include tight casts, burn injuries, and vascular injuries. The treatment of choice for acute compartment syndrome is immediate decompression by fasciotomy [5].

A diagnosis of compartment syndrome is suggested by history and examination; pain is thought to be the first and most sensitive sign [10], although other symptoms include paraesthesia, limb paresis, lack of pulses, and pallor [11]. However, when the diagnosis is in doubt other investigations include measuring tissue pressure and nerve stimulation [12]. Compartment pressures within 30-mmHg of diastolic pressure would suggest compartment syndrome [11]. There should be a low threshold for surgical intervention and clinical symptoms alone are usually enough to justify surgery.

Acute compartment syndrome most commonly involves the lower limb and cases involving the foot have been reported previously [13]. There is no consensus on the number of compartments in the foot, but it is most commonly argued that there are nine compartments in the foot – four interosseous compartments, three central (superficial, central and deep), the medial compartment and the lateral compartment [8, 14, 15]. Effective decompression can be achieved from dorsal incisions, as was done in this case because of the dorsal swelling and MRI findings; however a single medial incision can be used to decompress all nine foot compartments [15].

There has been debate amongst foot and ankle orthopaedic surgeons as well as military surgeons about surgical decompression versus conservative treatment for compartment syndrome of the foot. A recent survey of military surgeons concluded that if compartment syndrome is suspected, it should be decompressed with the aim of preventing chronic pain and deformity [16].

Atraumatic compartment syndrome of the foot is a rare condition; case reports of compartment syndrome secondary to infection have been described, but no cases due to group C hemolytic Streptococcus. One paper describes three case reports of acute, atraumatic compartment syndrome in the lower limb, one seemingly spontaneous, and two secondary to gastrocnemius hematomas and subsequent edema [1]. A small number of case reports have described similar cases of compartment syndrome of the upper limb secondary to infection (group A hemolytic Streptococcus) requiring decompression and antibiotics and, in one case, amputation [3,4].

Group C Streptococcus (and group G Streptococcus) of human origin are thought to be a single subspecies, Streptococcus dysgalactiae subspecies equisimilis. They are a normal commensal flora of the upper respiratory tract, skin, gastrointestinal tract, and female genital tract, and have been identified in pharyngitis, septic arthritis and osteomyelitis, soft tissue infections and meningitis [17].

Atraumatic cases can be easily missed, risking complications such as contractures or deformities of the foot, weakness, paralysis, sensory neuropathies and rarely amputation [8]. There is high morbidity and mortality [2], and it is now thought that serious complications such as muscle necrosis can occur as early as within three hours [18]. The risk of long-term complications is reduced the earlier a compartment syndrome is decompressed, although as acute compartment syndrome is relatively uncommon, there are no large studies describing chronic sequelae and overall patient outcomes [11].

There are several learning points from this case report, primarily that acute foot compartment syndrome is a limb threatening emergency which needs rapid recognition and often surgical decompression. Although the majority of acute cases are secondary to trauma, it is important to remember that there can be atraumatic causes as these are more likely to be missed. If a diagnosis is in doubt from the clinical history and examination, there are other investigations – such as measurement of compartmental pressures, but it is important not to delay fasciotomy due to associated morbidity and mortality of untreated acute compartment syndrome.


  1. Cara JA, Narvaez A, Bertrand ML, Guerdo E. Acute atraumatic compartment syndrome in the leg. Int Orthop. 1999; 23(1): 61 – 62
  2. Stracciolini A, Hammerberg EM. Acute compartment syndrome of the extremities. http://www.uptodate.com/contents/acute-compartment-syndrome-of-the-extremities (accessed 16 June 2016).
  3. Taylor J, Wojcik A. Upper limb compartment syndrome secondary to Streptococcus pyogenes (group A Streptococcus) infection. J Surg Case Rep. 2011; 3: 3
  4. Schnall SB, Holtom PD, Silva E. Compartment syndrome associated with infection of the upper extremity. Clin Orthop Relat Res. 1994 (306): 128–31 
  5. Matsen FA, III. Compartmental syndrome. An unified concept. Clin Orthop Relat Res. 1975;(113):8-14.
  6. Heemskerk J, Kitslaar P. Acute compartment syndrome of the lower leg: retrospective study on prevalence, technique, and outcome of fasciotomies. World J Surg. 2003; 27(6):744 – 747
  7. Bonutti PM, Bell GR. Compartment syndrome of the foot. A case report. J Bone Joint Surg Am. 1986; 68 (9): 1449 – 1451
  8. Fulkerson E, Razi A, Tejwani N. Review: acute compartment syndrome of the foot. Foot Ankle Int. 2003; 24(2): 180 – 187
  9. McQueen MM, Gaston P, Court-Brown CM. Acute compartment syndrome – Who is at risk? J Bone Joint Surg Br. 2000; 82(2): 200-3
  10. Ulmer T. The clinical diagnosis of compartment syndrome of the lower leg: are clinical findings predictive of the disorder? J Orthop Trauma. 2002; 16: 572 – 577
  11. Frink M, Hildebrand F, Krettek C, Brand J, Hankemeier S. Compartment syndrome of the lower leg and foot. Clin Ortho Relat Res. 2010; 468(4): 940 – 950
  12. Matsen FA IIIWinquist RAKrugmire RB Jr. Diagnosis and management of compartmental syndromes. J Bone Joint Surg Am. 1980; 62(2):286-91.
  13. Myerson MS. Management of compartment syndromes of the foot. Clin Orthop Relat Res. 1991; 239 – 248
  14. Manoli A, Weber TG. Fasciotomy of the foot: an anatomical study with special reference to release of the calcaneal compartment. Foot Ankle. 1990; 10: 267 – 275
  15. Karadsheh M. Foot compartment syndrome. http://www.orthobullets.com/trauma/1065/foot-compartment-syndrome (accessed 02 June 2016).
  16. Middleton S, Clasper J. Compartment syndrome of the foot – implications for military surgeons. J R Army Med Corps. 2010; 156(4): 241-4
  17. Wessells MR. group C and group G streptococcal infection. http://www.uptodate.com/contents/group-c-and-group-g-streptococcal-infection (accessed 15 August 2016)
  18. Vaillancourt C, Shrier I, Vandal A, Falk M, Rossignol M, Vernec A, Somogyi D. Acute compartment syndrome: How long before muscle necrosis occurs? CJEM. 2004; 6: 147 – 154

Application of the distally pedicled peroneus brevis: Technique, case study, and pearls

by Chad Seidenstricker DPM1, Megan L. Wilder DPM2, Byron L. Hutchinson DPM, FACFAS3pdflrg

Soft tissue defects of the distal leg and hindfoot are difficult to eradicate. Avascular structures become exposed through seemingly superficial wounds rather quickly. The present case describes a surgical technique for the peroneus brevis muscle flap for coverage of a postoperative lateral heel wound following a lateral extensile approach for ORIF of a calcaneal fracture. Nonoperative and operative wound care modalities failed over the course of several years, and a peroneus brevis rotational flap was attempted for wound coverage. Although several minor complications occurred, the wound had successful epithelialization at 3 months. The distally pedicled peroneus brevis muscle flap offers a good option at wound coverage in difficult to heal wounds of the distal leg and hindfoot.  

Key words: muscle flap, peroneus brevis, soft tissue defect, ankle, foot

ISSN 1941-6806
doi: 10.3827/faoj.2016.0903.0003

1 – Podiatry Resident at Swedish Medical Center PGY-3, Seattle, WA
2 – The Everett Clinic, Marysville, WA
3 – Director, Franciscan Foot and Ankle Institute; Medical Director, Foot & Ankle Service, CHI Franciscan Health, Federal Way, WA.
* – Corresponding author: chaddpm14@gmail.com

Soft tissue defects of the foot and ankle present a significant challenge. There is little soft tissue coverage and exposed tendon and bone can easily occur following elective reconstruction or trauma, requiring surgery. Skin grafting is often not an option in this region as bone and tendon are not suitable as a recipient bed. Rotational muscle flap techniques for foot and ankle wound closure are gaining popularity and have proven effective. Muscle flaps offer pliability and can eradicate dead space, can overcome residual bacterial infection in bone, improve blood flow, and will provide a vascular recipient bed for split thickness skin grafting [1]. While negative pressure wound therapy devices are excellent at promoting expedited closure of deep wounds, they should not be placed directly over bone or tendon and especially not in the setting of residual infected tissue.

Indications for rotational muscle flap wound closure may include exposed bone with osteomyelitis, traumatic wounds, non-healing wounds over the lateral ankle and hindfoot after Achilles tendon procedures, surgical wound dehiscence recalcitrant to nonoperative therapies after calcaneal fractures, ankle fractures, and total ankle arthroplasty. In a systematic review, Yu et al, demonstrated a wound complication rate of 13.5% in calcaneal fractures after ORIF [2]. There has been a movement toward minimally invasive techniques, but the lateral extensile incision is still routinely utilized. Raikin et al demonstrated an 8.5% incidence of wound complications following TAR with anterior midline incisional approach that required at least one secondary visit for surgical wound debridement [3]. Wound dehiscence after TAR requires immediate definitive treatment to avoid catastrophic deep space infection.

The distally pedicled peroneus brevis muscle flap offers a relatively simple, reproducible and reliable option for wound closure with complication rate equal or reduced compared to other techniques. In general the muscle flap should not be used as a first line procedure, but is used in limb salvage situations and has very little downside. The peroneus brevis muscle flap also has the advantage of low donor site morbidity and heals with minimal scar.  Lower extremity surgeons can easily perform the peroneus brevis flap closure if it is acceptable in the foot and ankle specialist’s region to perform this type of procedure.

Rationale & Background

Attinger described the role of various intrinsic muscle flaps for small wound closure of the foot and reported a 96% success rate [4]. The abductor hallucis muscle flap has been reported to provide excellent outcomes in plantar heel defects [4,5]. While intrinsic flaps have proven efficacy for small wounds about the foot, they are not sufficient for larger wounds of the hindfoot, ankle and lower leg. Larger wounds in the distal third of the leg and hindfoot are amenable to the peroneus brevis flap. The peroneus brevis muscle is classified as a type IV muscle flap by Mathes and Nahai, which represents a muscle flap with segmental blood supply provided by branches of equal importance (Table 1) [6]. Ensat et al evaluated the blood supply of the peroneus brevis muscle flap identifying constant blood supply by segmental branches of the peroneal and tibial arteries and also supported Yang’s finding of the most distal pedicle being provided between 4-5 centimeters proximal to the tip of the fibula [7,8]. Ensat also recommended a pivot point at least 6-cm above the tip of the fibula to assure there is an intact vascular pedicle, however, this should always be evaluated intraoperatively [7]. The muscle length available for rotation is close to 20-cm, but due to distal flap necrosis, the most proximal 2-cm should always be removed, providing a muscle approximately 18-cm in length [9,10,11].


Table 1: Mathes & Nahai [6] classification of muscle and myocutaneous flaps
Type I: One vascular pedicle
Type II: Dominant pedicle(s) and minor pedicle(s)
Type III: Two dominant pedicles
Type IV: Segmental vascular pedicles (ie Peroneus Brevis)
Type V: One dominant pedicle and secondary segmental pedicles

The arc of rotation is determined by the most distal vascular pedicle, which should allow an average of 12-cm from the pivot point.

We present a case in which a chronic lateral heel wound following ORIF of calcaneus was treated successfully with a distally pedicled peroneus brevis flap. Our scenario is similar to Rodriguez who recently reported success of the peroneus brevis flap following wound dehiscence after ORIF of a lateral malleolar fracture with subsequent surgical wound dehiscence [12].

Case report

In this case report, a 63 year old male non-smoker sustained a closed intra-articular calcaneal fracture. The records from previous surgeons were not retrieved so the exact timeline is unknown but the following events occurred over the course of several years prior to his definitive operation and closure. The patient had an ORIF through a lateral extensile approach with dehiscence at the apex of the incision which never fully healed.  He had hardware removal and local wound care which failed. He then had a small rotational flap which failed, followed by an advancement flap which resulted in re-opening of the sinus tract and a chronically draining wound with exposed bone. He presented to a local plastic surgeon for consultation who felt a free flap was not a good option. He then presented to the author’s clinic for a preoperative evaluation.  On arrival to clinic the patient had a small wound at the apex with a sinus tract and suspected osteomyelitis of the lateral calcaneal wall, which was draining minor amounts of serous fluid (Figure 1). A distally pedicled peroneus brevis rotational flap was planned.


Figure 1 Chronic lateral hindfoot wound recalcitrant to several operative debridements, antibiotics, local wound care, and local skin flaps.


Figure 2 Lateral incision over the fibula, with the peroneus longus retracted inferiorly and the peroneus brevis muscle belly and tendon origin exposed.

Surgical technique

After skin preparation, and exsanguination of the limb, a pneumatic thigh tourniquet was inflated to 350mmHg. An incision was made overlying the lateral heel wound in a curvilinear fashion extending a few centimeters proximally and a few distal to the wound. The scar tissue was bluntly dissected through down to calcaneus, and the skin was elevated in a single layer as a flap. There was a loose portion of cement that was noted in the lateral wall of the calcaneus which had been left from a prior surgery and this was removed.


Figure 3 Peroneus longus in the right hand, and peroneus brevis muscle belly held in the left.


Figure 4 Peroneus brevis muscle belly being elevated off the fibula, moving proximally.

The calcaneus was debrided to good, healthy bleeding bone that appeared without signs of infection. Attention was then directed to the lateral leg where a standard incision was made as described by Eren [13]. The incision connected with the lateral heel wound incision. The crural fascia overlying the peroneals was incised (Figure 2). The peroneus brevis was followed up its muscle belly proximally until the origin was released (Figure 3,4,5). Segmental pedicles were ligated from proximal to distal until approximately 6-cm proximal to the lateral malleolus.


Figure 5 The free peroneus brevis flap, with distal vascular pedicles still in tact.


Figure 6 Intraoperative doppler to assure the pedicle is patent to provide blood supply to the brevis muscle.


Figure 7 The peroneus brevis muscle flap rotated down, showing adequate length to reach the lateral heel wound.


Figure 8 Closure of the harvest site, demonstrating easy closure of the harvest site.

Utilizing ultrasound, a vascular pedicle was identified at this level (Figure 6). Care was taken to not violate the pedicle. The peroneus brevis was folded from proximal to distal into the wound and overlying the exposed calcaneal wound (Figure 7). It was loosely secured in place overlying the lateral wall of the calcaneus. The wound was then closed in layers proximally, leaving the distal wound overlying the lateral wall of the calcaneus open with the muscle flap secured within the wound (Figures 8,9).

An Integra bilayer wound matrix was then placed and trimmed to the appropriate size overlying the muscle flap (Figure 10). It was secured in place around the rim of the wound utilizing staples with a single staple in the middle of the flap. The membrane was then fenestrated to allow drainage. The site was then dressed with negative pressure wound therapy (Figure 11). A monorail external fixator was applied to the medial calcaneus and medial tibia with half pins to establish stability while being able to access the wound for local wound assessment and care in the early wound healing phase (Figure 12). Proper alignment was confirmed under fluoroscopy. Sterile dressings were then applied. Tourniquet was deflated.


Figure 9 Closure of the incision along the lateral leg down to the original defect site. The original defect site should be left open, and ideally is covered with a biologic dressing.


Figure 10 Securing an Integra graft over the exposed peroneus brevis in the chronic wound site with staples.


Figure 11 Wound vac secured over the Integra graft after fenestrating the integra graft.


Figure 12 Unilateral External fixator applied to the medial tibia for stabilization of the muscle and the wound to allow for incorporation.


Figure 13 Application of STSG roughly 3 weeks after the Integra graft was placed. The silicone layer was removed and the wound was carefully debrided and cleansed prior to application. STSG secured with staples.


Figure 14 Healed lateral foot wound.

Follow up care

About 2 weeks later, he presented to the emergency department with fever and chills and was noted to have a pin tract infection, requiring removal of one of the pins in the ED. The following week he returned to the operating room for removal of the external fixator and debridement of a small portion of muscle flap necrosis.  Following debridement, the split-thickness skin graft (STSG) was secured with staples and negative pressure wound therapy was applied (Figure 13). The patient presented to clinic for follow-up seven days post-skin graft application and negative pressure wound therapy was removed. Four days later he returned to clinic and reported a visit to the ED for fever and previous talar pin site irritation and pain with two centimeter diameter of surrounding erythema. He was started on IV rocephin for a few days and then transitioned to a two week course of Keflex. He had resolution of infection. His donor site incision healed without incident. He was discharged with instructions to remain NWB to his surgical limb until complete incorporation of graft, about two months. At final three-month follow-up he had completely healed (Figure 14).


There are several key points to discuss regarding this case report. First, there was partial flap necrosis, which required repeat debridement in the OR. For the case presented, the most proximal aspect of the peroneus brevis muscle belly was not debrided, which has been recommended by multiple authors [9,10,11]. Other potential ways to improve wound closure may include the use of bilayer membrane which, after it takes, will provide a superior surface for a STSG. Negative pressure wound therapy can be applied at 50-125mmHg [12]. It has been proposed that higher vacuum settings may be damaging to skin grafts, but this theory was not upheld [13].

Recently it was found that wound vac application at 75mmHg applied for seven days post-operatively significantly reduced partial flap necrosis and skin graft necrosis, and they concluded that prolonging the period of wound vac application may further reduce complications by eliminating shear force, improving neovascularization of the muscle, and reducing edema and venous congestion [14]. There is debate whether to perform the transfer of the brevis through a subcutaneous tunnel or whether to connect the harvesting incision to recipient site. It is not absolutely necessary to connect the incision with the recipient site, but there should not be excessive tension within the subcutaneous tunnel as this may obstruct venous outflow resulting in flap failure. If there is question, one should connect the recipient bed with the donor site incision.  

A few other obstacles occurred which can be avoided. While pin tract infections are common when using external fixators, rarely catastrophic infection develops. Minor infections can be managed with local wound care and oral antibiotics oftentimes. As long as there is not failure at the bone-pin interface with loosening, fracture with nonunion or malunion, or chronic osteomyelitis,  it should not compromise your end result. Placing a unilateral fixator to stabilize the extremity offers several advantages. It offers stability to the extremity and the wound bed in the immediate postoperative phase while also permitting wound care and wound observation for the first few weeks after index surgery. The external fixator can be removed at the three week mark as this is when you can return to the operating room, remove the silicone layer from the bilayer membrane, and harvest and apply the STSG. Other options include applying a posterior splint for immobilization, but this doesn’t offer an easily accessible portal for wound evaluation and wound care and, makes continued care with a wound vac particularly difficult. If the recipient site is prone to shear forces, ie lateral malleolus, be sure to utilize a bulky soft dressing to protect the graft site. Although several publications [14,15] have advocated for single stage procedure, it is prudent to wait for application of the STSG until muscle flap viability is assured. This prevents unnecessary repeat skin grafting.

It has been demonstrated that the peroneus brevis muscle flap provides a reliable means for treating bone infections, providing blood supply, and a suitable recipient bed for skin grafting [1]. Preoperatively the patients should be evaluated for vascular insufficiency. As foot and ankle experts, sacrificing the primary evertor of the foot may seem uncouth, but these are limb salvage situations. One can perform a tenodesis of the the peroneus brevis to the longus to enhance eversion power if it is possible. However, it has been shown that eversion and plantarflexion are maintained following the procedure even without ancillary procedures and patients do not report lateral ankle instability [16]. The donor site is rarely problematic, and can be closed primarily without issue [10-12,16-18].

The peroneus brevis has a consistent blood flow [7,16,17]. The maximum number of vascular pedicles should be maintained as possible, but one can elect to ligate all pedicles leaving only the most distal intact approximately 6-cm proximal to the tip of the fibula. To ensure adequate blood supply will be provided by each successive pedicle, a vascular clip can be placed temporarily to ensure the next pedicle maintains adequate perfusion. Ensat et al demonstrated in a cadaveric model that there were an average of 5.1 segmental branches to the muscle. This included branches from both the peroneal and the anterior tibial artery, however, most branches were derived from the peroneal artery [7]. The most distal vascular branch was derived from the peroneal artery in 100% of cadavers at a distance about 4.3cm proximal to the tip of the lateral malleolus. There is also retrograde flow provided from the posterior tibial artery [7]. This is important in gaining a muscle flap with the most potential length. The pivot point should be at least 6-cm proximal to the lateral malleolus to ensure there is a vascular pedicle attached distally to supply the muscle when performing rotational flaps. The diameter of the pedicle must be at least 0.5mm, while the average size pedicle is 1.1mm this is rarely a problem [7]. The average length of the muscle is 19.8cm, but the most proximal 2-cm should be resected as this area of the graft is expected to undergo necrosis.

In conclusion, many studies have found reliability in this muscle flap. It offers great utility to cover defects in the distal leg and hindfoot. It can cover defects of the anterior ankle, lateral ankle and hindfoot. Despite some authors reporting an unfavorable success rate, the majority of reports found high rates of success and this should be considered in the reconstructive ladder for complex lower extremity wounds [10,11,18,19].


  1. Anthony JP, Mathes SJ. Update on chronic osteomyelitis. Clin Plast Surg 1991;18:515-523. PubMed
  2. Yu X, Pang QJ, Chen L, Yang CC, Chen XJ. Postoperative complications after closed calcaneus fracture treated by open reduction and internal fixation: a review. Jour Int Med Research 2013; 42(1):17-25. PubMed
  3. Raikin SM, Kane J, Ciminiello ME. Risk factors for incision-healing complications following total ankle arthroplasty. J Bone Joint Surg 2010; 92 (12):2150-2155. (PubMed
  4. Attinger CE, Ducic I, Cooper P, Zelen CM. The role of intrinsic muscle flaps of the foot for bone coverage in foot and ankle defects in diabetic and nondiabetic patients. Plast Reconstr Surg  2002;110(4):1047-1054. PubMed
  5. Ortak T, Ozdemir R, Ulusoy MG, Tiftikcioglu YO, Karaaslan O, Kocer U, Sensoz O. Reconstruction of heel defects with a proximally based abductor halluces muscle flap. J Foot Ankle Surg 2005; 44(4): 265-270.  PubMed
  6. Mathes SJ, Nahai F. Reconstructive Surgery: Principles, Anatomy, and Technique. New York: Churchill-Livingstone: 1997.
  7. Ensat F, Weitgasser L,Hladik M, Larcher L, Heinrich K, Skreiner A, Russe E, Fuerntrath F, Kamp J, Cotofana S, Wechselberger G. Redefining the vascular anatomy of the peroneus brevis muscle flap. Microsurgery 2015;35:39-44. PubMed
  8. Yang YL, Lin TM, Lee SS, Chang KP, Lai CS. The distally pedicled peroneus brevis muscle flap anatomic studies and clinical applications. J Foot Ankle Surg 2005;44:259-264. PubMed
  9. Hu X, Du W, Chen Z, Li M, Wang C, Shen Y. The application of distally pedicled peroneus brevis muscle flaps and retrograde neurocutaneous accompanying artery flaps for treatment of bony and soft-tissue 3-dimensional defects of the lower leg and foot. Int J Lower Ext Wound 2013;12(1):53-62. PubMed
  10. Ng YH, Chong KW, Tan GM, Rao M. Distally pedicled peroneus brevis muscle flap: a versatile lower leg and foot flap. Singapore Med J 2010; 51(4):339-342. PubMed
  11. Schmidt AB, Giessler GA. The muscular and the new osteomuscular composite peroneus brevis flap: experiences from 109 cases. Plast Reconstr Surg 2010; 126:924-932. PubMed
  12. Rodriguez Collazo ER, Bibbo C, Mechell RJ, Arendt A. The reverse peroneus brevis muscle flap for ankle wound coverage. J Foot Ankle Surg 2013;52:543-546. PubMed
  13. Timmer MS, Le Cessie S, Banwell P, Gukema GN. The effect of varying degrees of pressure delivered by negative-pressure wound therapy on skin perfusion. Ann Plast Surg. 2005;55(6):665-71. PubMed
  14. Erne H, Schmauss D, Schmauss V, Ehrl D. Postoperative negative pressure therapy significantly reduces flap complications in distally pedicled peroneus brevis flaps: experiences from 74 cases. Injury 2016;47:1288-1292. PubMed
  15. Ensat F, Hladik M, Larcher L, Mattassich G, Wechselberger G. The distally based peroneus brevis muscle flap – clinical series and review of the literature. Microsurgery 2013;34:203-208. PubMed
  16. Eren S, hofrani A, Refenrah M. The distally pedicled peroneus brevis muscle flap: a new flap for the lower leg. Plastic Recon Surg 2001;107:1443-1448. PubMed
  17. Lorenzetti F, Lazzeri D, Bonini L, Giannotti G, Piolanti N, Lisanti M, Pantaloni M. Distally based peroneus brevis muscle flap in reconstructive surgery of the lower limb: postoperative ankle function and stability evaluation. J Plast Reconst Aesthet Surg 2010;63:1523-1533. PubMed
  18. Bach AD, Leffler M, Kneser U, Kopp J, Horch RE. The versatility of the distally based peroneus brevis muscle flap in reconstructive surgery of the lower leg. Ann Plast Surg 2007;58:397-404. PubMed
  19. Barr ST, Rowley JM, O’Neill PJ, Barillo DJ, Paulsen SM. How reliable is the distally based peroneus brevis muscle flap. Plast Reconstr Surg 2002;110(1):360-362. PubMed

Giant conventional schwannoma of the foot: A case report

by Low Chin Aun, MBBS; Agus Iwan Foead, MS Orthpdflrg

The Foot and Ankle Online Journal 7 (4): 3

Schwannomas, also known as neurilemmoma, are amongst the most common tumors arising from peripheral nerves. It usually presents as a solitary swelling and may occur anywhere in the body with a neural supply. However, its occurrence in the foot is rarely reported. We report a case of a sixty year old man with a large schwannoma of his right foot, who never sought treatment for 20 years since its first occurrence.

Key words: Schwannoma, neurilemmona, tumor, foot

ISSN 1941-6806
doi: 10.3827/faoj.2014.0704.0003

Address correspondence to: Low Chin Aun
Department of Orthopaedic Surgery, Hospital Tuanku Ampuan Najihah, Kuala Pilah, Malaysia.

Schwannoma is the most common benign, neurogenic tumor arising from Schwann cells of nerve sheaths. It occurs most frequently in the head and neck region, especially involving cranial nerves and brachial plexus. It is seldom reported in the upper and lower limbs [1]. This tumor grows in variable size and usually present as a slow growing solitary tumor, rarely associated with pain and paraesthesia. Neurological symptoms often accompany larger swelling. Its occurrence in the foot is rarely reported. Schwannomas constituted 5% of all benign soft-tissue tumors, and only 9% of these schwannomas were found in the foot or ankle [2]. We report a case of a large cutaneous schwannoma of the foot and its management.

Case Report

A 60-year-old man presented to our orthopaedic outpatient clinic with complaints of a solitary swelling over the lateral aspect of his right forefoot. He claimed the swelling has been gradually increasing in size for the past twenty years and was associated with intermittent pain and paraesthesia at his right foot. The swelling prohibited him from wearing his footwear due to its size. Patient has tried traditional treatment with massage and ointments but had no improvement. His past medical history was unremarkable and there was no family history suggestive of neurofibromatosis.

Physical examination revealed a 10cm x 10cm x 8cm tumor over the lateral aspect of his right foot (Figure 1). Its consistency was firm, and it was attached to the underlying tissue. On percussion, it produces an electric shock similar to Tinel’s sign. However, there was no tenderness, erythematous, warmth or ulceration of the skin over the tumor. Neurovascular status of the right foot was normal. Systemic review was unremarkable. Plain radiograph of the right foot did not show any bony involvement (Figure 2).


Figure 1 Swelling on the lateral aspect of patient’s foot.


Figure 2 X-rays revealing a tumor on the lateral aspect of patient’s right foot.

At surgical excision, the capsule was found at the deeper plane. There was no attachment of the tumor with adjacent soft tissue which permitted easy in toto removal. The wound was then closed with split skin graft harvested from his left thigh. The patient did not experience any complication postoperatively. The tumor was preserved in formalin solution and sent to the pathology lab. One month later he was reviewed again in the clinic. There were no evidence of recurrence and his wound had healed well with good uptake of the skin graft (Figure 3). Histopathological examination revealed a conventional right foot schwannoma with cystic degeneration.


Figure 3 Well healed wound post-removal of schwannoma.


Schwannoma of the foot is interesting due to its rarity. Its diagnosis and treatment should be differentiated with neurofibroma or malignant peripheral nerve sheath tumor (MPNST). Schwannoma is embryologically derived from neuroectodermal Schwann cell which forms the myelin sheath that facilitates transmission of nerve impulses [3]. This well encapsulated tumor is usually benign in nature and malignant transformation is rarely reported [4]. Multiple schwannomas have been reported to have autosomal dominant inheritance. These tumors have also been associated with von Recklinghausen’s disease in which there is somatic mutation of NF2 gene. It appears that it has no geographical and race predilection. The average age of its presentation is 20 – 50 years with a mean age of 46 [2].

Benign peripheral nerve sheath tumors are divided into two major groups; Schwannoma and neurofibroma. Differentiation of schwannoma from neurofibroma is of importance because schwannoma can easily be shelled out without injuring the nerve contiguity. In neurofibroma, the nerve is incorporated into the mass. Surgery of neurofibroma might need to resect the nerve, and subsequent nerve grafting might be needed to restore function. Large schwannoma commonly undergo cystic degeneration. Few neurofibromas have cystic changes due to myxoid degeneration. There has been argument about the cystic degeneration between the two tumors. Most literature showed schwannoma has higher chance of cystic degeneration compared to neurofibroma. Histogenesis of schwannoma and neurofibroma has been argued for decades and is beyond the scope of the discussion. It suffices to say that solitary schwannoma is composed almost exclusively of cells with characteristics of differentiated Schwann cells. However neurofibroma shows the presence of three types of cells, i.e. Schwann-like cells, perineurial-like cells, and fibroblast-like cells. Histologically staining with S-100 shows that schwannoma has hypercellular area alternating with hypocellular area, which respectively are called Antoni A, and Antoni B areas. The hypercellular area is made up of spindle cells with tapered nuclei arranged in palisading pattern whereas the hypocellular area is composed of loose stroma [4].

Malignant peripheral nerve sheath tumor (MPNST) is a sarcoma which can originate from peripheral nerve or from the cell associated with the nerve sheath, such as Schwann cell, perineural cell, or fibroblast [5]. The term MPNST replaces previously used names including malignant schwannoma, neurofibrosarcoma and neurogenic sarcoma. Fifty percent of MPNST occurs in patient with NF1 gene. It typically occurs between the ages of 20 – 50. The clinical presentation is almost the same as schwannoma and neurofibroma except the rapidly enlarging mass within the time spectrum alerts the physician of the possibility of its malignant degeneration. Histological appearance shows dense cellular fascicles alternating with myxoid region. This swirling arrangement is also called marbleized pattern. The cells may be spindle, round or fusiform in shape. Nuclear palisading is very rare compare with schwannoma and occurs in only 10% of cases. Malignancy is suggested by invasion of the surrounding tissue, and vascular structures, nuclear pleomorphism, necrosis, and mitotic activity.


Schwannoma of the foot is a rare tumor which present as solitary swelling of the extremity. Clinicians should always consider schwannoma as a differential diagnosis during approach of mass in the upper or lower limbs. It is essential to differentiate schwannoma with neurofibroma, and also MPNST as each entity is differently managed clinically.


  1. Knight DMA, Birch R, Pringle J. Benign solitary schwannomas: a review of 234 cases. J Bone Joint Surg [Br] 2007;89-B:382-7. (PubMed)
  2. Kransdorf MJ. Benign soft-tissue tumors in a large referral population. ARJ Am J Roentgenol. 1995;164:395-402. (PubMed)
  3. Berlin SJ. Soft somatic tumors of the Foot: Diagnosis and surgical management. Futura Publishing Co, Mount Kisco, NY: 227, 1976.
  4. Harkin JC, Reed RJ. Tumors of the peripheral nervous system, fascicle 3, second series. Washington, DC: Armed Forces Institute of Pathology, 1969:60-64.
  5. Endo M,Yamamoto H, Harimaya K, Kohashi K, Ishii T, Setsu N et al. Conventional spindle cell-type malignant peripheral nerve sheath tumor arising in a sporadic schwannoma. Hum Pathol. 2013 Dec;44(12):2845-8. (PubMed)

‘Fast Casts’: Evidence Based and Clinical Considerations for Rapid Ponseti Method

by April Sutcliffe1, Kolini Vaea2, John Poulivaati2, Angela Margaretpdflrg Evans3,4

The Foot and Ankle Online Journal 6 (9): 2

The Ponseti method of correction of congenital clubfoot is recognized as the preferred management technique for this pediatric deformity. The original method has been subtly modified over time in response to clinical experience and research findings. Most recently, two randomized controlled trials have shown that less time is needed for each serial cast immobilization. Clinical cases from the Kingdom of Tonga are presented to illustrate the clinical use of more rapid plaster cast changes – the ‘fast casts’ modification incorporating increased manual manipulation time, within the Ponseti method. The Pirani score was used to monitor the clubfoot correction between each plaster cast change for each baby. In all feet the Pirani scores reduced sequentially with shorter periods of casting. Shorter duration of cast immobilization – ‘fast casts’ – can be used with many advantages for the clinical setting. Less time in plaster can at least halve the corrective phase of Ponseti management without compromising results. In addition, there are possible benefits for families from distant locations, for babies being less prone to skin irritations, and less difficult day-to-day baby care related to long leg plaster casts. These factors may benefit compliance and overall treatment outcomes.

Key words: clubfoot, Ponseti, pediatric, foot

Accepted: August, 2013
Published: September, 2013

ISSN 1941-6806
doi: 10.3827/faoj.2013.0609.002

Address correspondence to: Department of Podiatry, Lower Extremity and Gait Studies (LEGS) Research Program, La Trobe University, Bundoora, Melbourne, Australia. Email: angela.evans@latrobe.edu.au

1Sydney Children’s Hospital, High Street, Randwick, Sydney, Australia
2Vaiola Hospital, Tonga
3Department of Podiatry, Lower Extremity and Gait Studies (LEGS) Research Program,
La Trobe University, Bundoora, Melbourne, Australia
4Health and Rehabilitation Research Institute, AUT University, Auckland, New Zealand

The Ponseti method has taken the developed world by storm in the last decade, becoming acknowledged as the optimal treatment for congenital clubfoot deformity.[1,2]

Cited as the most significant and potentially debilitating congenital pediatric orthopaedic deformity, talipes equino varus, has littered the pages of historic tomes, medical journals and textbooks alike.[3] The Egyptian boy king, Tutankhamen; the tragic poet, Lord Byron; and celebrated stage and screen actor, Dudley Moore; eponymously all male, were born and/or lived with clubfoot deformity. [4]

Whilst management with splints, binding, and plaster casts has been evident across the hundreds and thousands of years in which clubfoot deformity is referenced, the 20th century saw such conservative measures subsumed by surgical correction, and notably the posterior medial release (PMR). [5-7] The PMR is a joint invasive procedure, which also severs to lengthen, all the soft tissue structures found contracted on the medial and posterior aspects of the infant clubfoot.[8]

In the 21st century, surgical correction of clubfeet has been firmly denounced.[9] Both retrospective concerns and reviews, and prospectively designed studies have shown the poor outcomes, in terms of pain and function, resulting from the PMR and akin surgical procedures.[7]

Simultaneously, the Ponseti method, developed and named after the orthopedic specialist Ignacio Ponseti[10], has been investigated both retrospectively and in many prospective randomized controlled trials (RCTs), and found not only to give the best clinical outcomes, but to also be a more economical management, when compared to surgery – the rare health care setting finding of a ‘win:win’.[11]

Much investigation of Ponseti’s original method has occurred in the last decade.[7,12,13] Whilst it’s superior outcomes for management of congenital clubfoot has met with universal consensus, this has also resulted in considerable refinement of the technique.[11,14,15]

The original Ponseti method

The duration of each serial plaster cast, a fundamental aspect of the basic weekly casts which made up the original Ponseti method[16] now has good evidence for amendment.

The original method described by Ponseti involves a series of plaster casts changed weekly for a period of five to six weeks, followed by percutaneous elongation of the Achilles tendon and application of a final cast for three weeks. The foot abduction bracing phase, is commenced immediately after the post tenotomy cast is removed.

There is now strong evidence to suggest that accelerated frequency of cast changes has comparable outcomes to those of the original Ponseti method.[17] with the benefit of limiting time spent is casts during the corrective phase of treatment.

The evidence for, and implication of, ‘fast casts’

It was first revealed that casts changed every five days, instead of the originally prescribed seven days, gave the same results – potentially saving ten to 12 days in the initial casting phase.[18] Two more recent RCTs have shown that casts changed twice (even three times) each week attain the same correction as weekly casts. [17, 19]

The halving of the casting phase from an average six weeks to three weeks, without compromising results, has clear advantages. Less time immobilized in plaster casts is intuitively preferable for the baby, and their parents or caregivers. Shorter durations of each corrective cast reduces the likelihood and extent of undetected skin pressure lesions, and at least halves the overall corrective phase, such that babies commence the (virtually) full-time boots and bar phase over three months, at a younger and possibly more amenable age. With the consistently demonstrated and positive correlation between successful use of the maintenance boots and bar, and lessened relapse of clubfoot correction – starting the boots and bar habit earlier within the rapid development that hallmarks infancy – may be more helpful than at first glance considered.[20-22]

How can the notion of ‘fast casts’ be applied clinically, and what are the possible pitfalls as well as benefits?

Illustrative use of the ‘fast casts’ technique

Two cases from Tonga, the country with the world’s highest incidence of congenital clubfoot deformity[23], are included in this review. In Tonga, a pacific island country geographically comprised of numerous islands, clinical use of the ‘fast casts’ method facilitates coordination with the availability of surgical expertise to perform Achilles tenotomies, as well as accelerated progress of babies through the casting stage. Both of the case-study babies were cast and re-cast four times in one week. This is more rapid and intense than might normally occur due to the visit from the off-shore surgeon occurring the following week (the local surgeon has now undertaken training for tenotomy procedures).

Fig 1 Baby J

Figure 1 Baby J, whose data is presented in table 2.


Table 1 Baby J – left congenital clubfoot. The use of ‘fast casts’ saw this baby’s corrected and ready for the tenotomy procedure after six days (4 casts).

Fig 2 Baby S

Figure 2 Baby S, whose data is presented in table 3.


Table 2 Baby S – bilateral congenital clubfeet. The use of ‘fast casts’ corrected the cavus and adduction of the clubfoot deformity, but made no change to the equinus component, which required the tenotomy for correction (as indicated by the initial Pirani score).

As the Tables 1 and 2 show, both babies showed consistent correction of their foot deformity with manipulation and casting. (Fig. 1 and 2) The Pirani scores reduced consistently within the initial corrective phase, showing the value of using this demonstrably reliable and objective measure. Further, the initial Pirani scores of 5 and 5.5 respectively, heralded the very likely need for tenotomies.[24] Indeed, the hindfoot scores equaled or approximated the total Pirani scores after the casting phase, signaling the residual equinus aspect of the deformity. It must be stated that similarly to the findings of the clinical trial by Xu et al[17], that these Tongan cases also underwent ‘more rather than less’ manipulation prior to casting. Whilst the effect of manipulation time has not been formally studied, histological investigation directs maintained loading of ligaments to promote the lengthening or ‘uncrimping’ of these structures.[25] Might it be that more attention to, and time spent, carefully manipulating clubfoot correction is able to render cast time less relevant?

Considerations, variations, and further questions

There are many factors to consider when contemplating the use of ‘fast casts’ as part of the Ponseti clubfoot correction method.

Firstly, there is now very good evidence to support shortening cast time[17] for the typical, congenital clubfoot deformity.

Secondly, the convenience for parents travelling with infants to distant clinics for treatment which necessitates time away from home, work, and family, a common occurrence in developing countries, may be greatly improved.[26-28] If, as on average, a baby requires six casts, the time away from home/work may be reduced from six weeks to two weeks. This could provide great savings for costs incurred whilst living away from home, and time lost from work. In turn, compliance may also benefit.

Thirdly, less time immobilized in plaster is probably advantageous for the baby in terms of reduced skin sore issues, easier bathing, more normal motor development and possibly lessens the risk of osteopenia.[29]

Notable in the current findings on faster casting is the longer manipulation time, (two minutes) specified by Xu, et al., [17], an additional departure from the original Ponseti protocol, and also the long follow up time of this study, as opposed the otherwise similar Malawi trial.[19]

It is important to appreciate that all accelerated casting studies and trials have addressed the typical congenital clubfoot, and that the effects and use in syndromic[11] or complex clubfoot types[30] are unknown.

The application of best available evidence to any health care setting is important, particularly if there are clear benefits to the recipients of this care. The rescheduling of the weekly clubfoot clinic for casting, to at least twice weekly, is now a possible shift in contemporary evidence based practice.


The Ponseti method continues to be the best approach to correction of the typical congenital clubfoot. There is now high-level evidence to support changing casts after three days or less, which greatly reduces the time infants spend immobilized in plaster.

The pre-casting manipulation is important and indications are that more time spent may be beneficial in correcting the clubfoot deformity.

In developing countries where travelling to clinics necessitates time away from home, work, and family, the adoption of ‘fast casts’ can reduce costs to families, and perhaps help to improve compliance and overall outcomes.


1.           Steinman S, Richards BS, Faulks S, Kaipus K. A comparison of two nonoperative methods of idiopathic clubfoot correction: the Ponseti method and the French functional (physiotherapy) method. Surgical technique. JBJS 2009 91A (Suppl 2): 299-312. [PubMed]
2.           Carroll NC. Clubfoot in the twentieth century: where we were and where we may be going in the twenty-first century. J Pediatr Orthop 2012 21: 1-6. [PubMed]
3.           Dobbs MB, Morcuende JA, Gurnett CA, Ponseti IV. Treatment of idiopathic clubfoot: an historical review. Iowa Orthop J 2000 20: 59-64. [PubMed]
4.           Anand A, Sala D. Clubfoot: Etiology and treatment. Indian J Orthop 2008 42: 22-28.  [PubMed]
5.           Manzone P. Clubfoot surgical treatment: preliminary results of a prospective comparative study of two techniques. J Pediatr Orthop 1999 8: 246-250. [PubMed]
6.           Zionts LE, Zhao G, Hitchcock K, Maewal J, Ebramzadeh E. Has the rate of extensive surgery to treat idiopathic clubfoot declined in the United States? JBJS 2010 A92: 882-889. [PubMed]
7.           Halanski MA, Davison JE, Huang J-C, Walker CG, Walsh SJ, Crawford HA. Ponseti method compared with surgical treatment of clubfoot: a prospective comparison. JBJS 2010 A92: 270–278. [PubMed]
8.           Laaveg S, Ponseti I. Long-term results of treatment of congenital club foot. JBJS 1980 62A:23-31. [PubMed]
9.           Morcuende J, Dolan L, Dietz F, Ponseti I. Radical reduction in the rate of extensive corrective surgery for clubfoot using the Ponseti method. Pediatrics 2004 113: 376-80. [PubMed]
10.         Ignacio Ponseti [Internet]. Wikipedia. [cited 2013 Jan 29]. Available from: http://en.wikipedia.org/wiki/Ignacio_Ponseti 
11.         Dobbs MB, Gurnett CA. Update on clubfoot: etiology and treatment. Clin Orthop and Rel Res  2009 467: 1146-1153. [PubMed]
12.         Niki H, Nakajima H, Hirano T, Okada H, Beppu M. Ultrasonographic observation of the healing process in the gap after a Ponseti-type Achilles tenotomy for idiopathic congenital clubfoot at two-year follow-up. J Orthop Sci 2013 18: 70-75. [PubMed]
13.         Carroll N. Editorial: Clubfoot: What Have We Learned in the Last Quarter Century? J Pediatr Orthop 1997 17: 1-7.  [PubMed]
14.         Rijal R, Shrestha BP, Singh GK, Singh M, Nepal P, Khanal GP, Rai P. Comparison of Ponseti and Kite’s method of treatment for idiopathic clubfoot. Indian J Orthop 2010 44: 202-207. [PubMed]
15.         Andriesse H, Roos EM, Hägglund G, Jarnlo G-B. Validity and responsiveness of the Clubfoot Assessment Protocol (CAP). A methodological study. BMC Musculoskelet Disord 2006 7: 28. [PubMed]
16.         Ponseti I. Clubfoot management. J Pediatr Orthop 2000 20: 699-700.[PubMed]
17.         Xu RJ. A modified Ponseti method for the treatment of idiopathic clubfoot: a preliminary report. J Pediatr Orthop 2011 31: 317-319. [PubMed]
18.         Morcuende J, Abbasi D, Dolan L. Results of an accelerated Ponseti protocol for clubfoot. J Pediatr 2005 25: 623-625. [PubMed]
19.         Harnett P, Freeman R, Harrison WJ, Brown LC, Beckles V. An accelerated Ponseti versus the standard Ponseti method: a prospective randomised controlled trial. JBJS 2011 B93: 404-408. [PubMed]
20.         Garg S, Porter K. Improved bracing compliance in children with clubfeet using a dynamic orthosis. J Children’s Orthopaedics 2009 1: 271-276. [PubMed]
21.         Boehm S, Sinclair M. Foot abduction brace in the Ponseti method for idiopathic clubfoot deformity: torsional deformities and compliance. J Pediatr Orthopaedics 2007 27: 712-716. [PubMed]
22.         Ippolito E, Fraracci L, Farsetti P, Di Mario M, Caterini R. The influence of treatment on the pathology of club foot. CT study at maturity. JBJS 2004 B86: 574-580. [PubMed]
23.         Chapman C, Stott NS, Port RV, Nicol RO. Genetics of club foot in Maori and Pacific people. J Med Genet 2000 37: 680-683. [PubMed]
24.         Shack N, Eastwood D. Early results of a physiotherapist-delivered Ponseti service for the management of idiopathic congenital talipes equinovarus foot deformity. JBJS 2006 88: 1085-1089. [PubMed]
25.         Ponseti I. Treatment of congenital club foot. JBJS 1992 74: 448-454.[PubMed]
26.         Pirani S, Naddumba E, Mathias R, Konde-Lule J, Penny JN, Beyeza T,  Mbonye B, Amone J, Franceschi F.Towards Effective Ponseti Clubfoot Care: The Uganda sustainable clubfoot careproject. Clin Orthop Rel Res 2009 467:1154-1163. [PubMed]
27.         Evans AM, Van Thanh D. A review of the Ponseti method and development of an infant clubfoot program in Vietnam. JAPMA 2009 99: 306-316. [PubMed]
28.         Evans AM. Preliminary evaluation of implementing the Ponseti method for correction of clubfoot in Vietnam. J Children’s Orthop 2010 4: 553-559. [PubMed]
29.         Lourenço AF, Morcuende JA. Correction of neglected idiopathic club foot by the Ponseti method. JBJS 2007 89B: 378-381. [PubMed]
30.         Ponseti IV, Zhivkov M, Davis N, Sinclair M, Dobbs MB, Morcuende JA. Treatment of the complex idiopathic clubfoot. Clin  Orthop Rel Res 2006 451:171-176. [PubMed]

The Role of High Resolution Ultrasonography in Detection of Neglected or Missed Radiolucent Foreign Body in Foot and Ankle Region

by Reyaz Ahmad Dar (MS)1emailsm, Mubashir Maqbool Wani (MS)2emailsm, pdflrgMubashir Rashid Beig (MS)1, Muzaffer Ahmad Ganaie (MS)1

The Foot and Ankle Online Journal 6 (3): 2

A prospective case series was undertaken to assess the role of high resolution ultrasonography to detect radiolucent foreign bodies in the foot and ankle region. Out of 30 suspected foreign bodies, ultrasonography was able to detect 28 foreign bodies with 2 false negatives. The overall sensitivity was 93.33%. The false negatives were attributed to the foreign body being obscured by bone.

Key words: , foot, ankle, ultrasound,

Accepted: February, 2012
Published: March, 2013

ISSN 1941-6806
doi: 10.3827/faoj.2013.0603.002

Address correspondence to: Department of orthopaedics, SKIMS Medical college Srinagar Kashmir India – Pin 190018

1Department of orthopaedics, SKIMS Medical college Srinagar Kashmir India – Pin 190018
2Hospital for bone and joint surgery Barzulla Srinagar Kashmir India – Pin 190005

Missed or neglected foreign body and subsequent complications in the extremities is a challenging complaint in the orthopedic outpatient department. Most of these cases present with soft tissue mass, granuloma, abscess, corns, osteomyelitis, fasciitis, cellulitis, chronic discharging sinus, and tendon contracture with or without pain.[1,2,3] The initial investigation is usually done with a plain radiograph, which however, cannot detect radiolucent foreign bodies such as those of wood, plastic and rubber.

Of the other imaging modalities, xeroradiography provides better edge enhancement, but it requires special equipment and is inadequate in detecting radiolucent foreign bodies.[4,5]

Computerized tomographic (CT) scan has the ability to detect the radiolucent foreign bodies with limitations of ionizing radiation, cost and poor sensitivity in detecting small foreign bodies.[6,7] Magnetic Resonance Imaging (MRI) can detect radiolucent foreign bodies but has the limitations of being inaccessible, expensive, and a concern regarding magnetic foreign bodies as well as time consuming.


Figure 1 and Figure 2 High-resolution ultrasound of a foot suspected of having a foreign body.

There is an added disadvantage of not detecting foreign bodies with low signal intensity from tissues such as scar tissue, tendon and calcifications.[8,9] Sonography, on the other hand, is easily accessible, inexpensive and a time saving image modality.

We undertook our study on thirty patients who presented to our outpatient department at two hospitals with a definite history of foreign body injury to the foot and ankle region. Patients presented with varied signs and symptoms which included pain, soft tissue mass, abscess, corn, chronic discharging sinus with duration of symptoms ranging from four months to eight years.

Most of these patients were initially managed by primary care givers and missed or often self treated themselves removing only a part of foreign body and subsequently neglected. Our aim was to assess the role of foreign body detection in these patients with high resolution ultra sonography (USG).

Materials and Methods

Thirty symptomatic patients who had a definite history of foreign body injury of the foot and ankle region were included in this study. The symptoms of these patients varied from simple pain to chronic discharging sinus and all had a normal plain radiograph. All of them underwent high resolution ultra sonography of the affected part followed by surgical exploration.

Sonography was conducted by four specialist doctors who had a minimum of four years of experience in the radiology department. Sensitivity of USG was determined with respect to that found on surgical exploration.


Thirty consecutive patients presented to our outpatient departments from May 2008 to May 2012 with history of foreign body injury. Patients presented with persistent pain, soft tissue mass, granuloma, abscess or chronic discharging sinus with a normal radiograph. Nineteen patients were male. Twenty two patients were younger than twenty years of age. Twenty eight patients had symptoms in the foot; two had symptoms in the ankle region. Twenty three patients had a history of nail insertion in the foot through a rubber sole. There was thorn injury in six patients with five having it in the foot and one in the ankle region. One patient had injury to the ankle with a wood. Three patients had multiple surgical interventions for chronic discharging sinuses.

All these patients were sent to radiology for the high resolution ultra sonography of the affected part. In all our cases a frequency of 7.5 MHz to 13 MHz was employed. Foreign bodies were reported as hyperechoic masses with surrounding hypo echoic rim with an acoustic shadow in twenty eight patients (Fig. 1 and Fig. 2).


Figure 3 Foreign body seen at the time of surgery.

Two patients which were reported negative had chronic discharging sinus with one having it on the lateral malleolus and another on the dorsal aspect of the foot. All patients underwent surgical exploration under general or regional anaesthesia with tourniquet control. Preoperative methylene blue injection into the sinus was used in three patients with chronic discharging sinus. Foreign bodies were recovered from all the patients (Fig. 3 and Fig. 4). Two patients who were labeled by the sonologist of not having a foreign body had foreign bodies close to or obscured by the bone. One of the patients had injury to the right lateral malleolar area with a wooden foreign body with persistent sinus discharge, and on exploration the foreign body was found very close to and abutting the cortex. Another patient had a history of nail insertion through the sole of the shoe with persistent sinus discharge on the planter aspect of the foot, and on surgical exploration a piece of rubber was found abutting the second metatarsal shaft cortex on the dorsal aspect. Out of the total thirty suspected radiolucent foreign bodies, high resolution ultra sonography was able to detect the foreign body in 28 patients with two false negatives with an overall sensitivity of 93.33%.


Figure 4 Foreign body after removal.


The basic principle of ultra sound is the use of a transducer to penetrate tissues with ultrasonic waves at various frequencies. When the wave strikes the denser component of tissue, they bounce (echo) back to the transducer. The ultrasound can then interpret the speed and intensity of the sound wave to determine the location and composition of the object. Structures are plotted on the screen based on their depth and location relative to the transducer. Superficial structures are plotted at the top and deeper ones at the bottom of the screen. The larger the surface area toward the transducer the greater it will reflect. Sonographic features of the foreign bodies in the soft tissues have three components. Firstly, the appearance of the foreign body; secondly, the changes in the soft tissues surrounding the foreign bodies. Thirdly, the appearance of soft tissues distal to the foreign bodies.

All foreign bodies on ultrasonography appear as hyperechoic foci. The reflectivity depends on acoustic impedance of the foreign body which in turn varies with the density of the object. In general, metal, mineral, glass, wood, and rubber reflect sound, appearing white on the screen. The changes surrounding the foreign bodies are due to inflammatory reaction which may range from edema to abscess formation.

This reaction takes some time to develop and is shown as hypo echoic rim around the foreign body. Distal to the echo rich foreign body acoustic shadowing is noted. This is due to failure of the ultrasound to pass through the foreign body.[10,11]

Despite their size, foreign bodies are no small matter. When left untreated they cause pain, swelling, infection, nerve and tendon injury.[2,3,12] Although USG has been a well-established diagnostic tool for foreign bodies in the soft tissues, it has been underutilized in this part of the world. While evaluating the usefulness of USG in the detection of unsuspected foreign bodies followed by CT, MRI, bone and labeled red cell Scintigraphy, it has been found that the later investigations added no relevant information and were time consuming and costly.[12] The sensitivity of USG in detecting different foreign bodies has been reported to be 70% to 100%. Cases which turned out to be false negatives had either a very deep foreign body, gas around foreign body, or a foreign body too close to the bone [8,13,14,15] as was the case in two of our patients.

Several studies have demonstrated the effectiveness of USG in detecting non-opaque foreign bodies in the soft tissues. The power of USG is as important as the depth of penetration of wave into soft tissues. The shorter wave length with high frequency penetrates less as most of energy is absorbed by the medium.[15] The authors do not believe that the results could be different if the USG was done by the same radiologists. Differences in the comparative accuracy, sensitivity and specificity of foreign body detection by radiologist and USG technician has not been found to be statistically significant in the previous studies.[16]


The authors do not recommend replacing plain radiography with ultrasonography in the evaluation of suspected foreign bodies of the foot and ankle region. But Sonography should definitely be considered part of diagnostic work up of patients in whom we strongly suspect the presence of radiolucent foreign bodies based on history and symptomatology.


  1. Lammers RL. Soft issue foreign bodies. Ann Emerg Med 1987 17:1336-1346.[PubMed]
  2. Dhar SA, Dar TA, Sultan A, , Butt MF, Mir MR, Kawoosa AA, Farooq S. Delayed manifestations of the nail –slipper injury. Chir Organi 2009 93 149-153.[PubMed]
  3. Dar TA, Sultan A, Hussain S, Dhar SA, Ali MF. Contracture of the third toe as delayed manifestation of foreign body in the foot. Foot Ankle Specialist 2011 4: 298-300. [PubMed]
  4. Anderson MA, Newmeyer WL, Kilgore Jr ES. Diagnosis and treatment of retained foreign bodies in the hand. Am J Surg 1992 144: 63-65. [PubMed]
  5. Flom LL, Ellis GL. Radiologic evaluation of foreign bodies. Em Med Clinics North Am 1992 10 163-177. [PubMed]
  6. Russell RC, Williamson DA, Sullivan JW, Suchy H, Suliman O. Detection of foreign bodies in hand. J Hand Surg 1991 16A: 2-11. [PubMed]
  7. Mizel MS, Steinmetz N, Trepman E. Detection   of wooden foreign bodies in the muscle tissue: experimental comparison of computerized tomography, magnetic resonance imaging and ultra sonography. Foot Ankle 1994 15: 437-443. [PubMed]
  8. Tedric D. Boyce, David P. Fessell, Jon A. Jacobson. Lin J, van Holsbeeck MT, Hayes CW. Foreign bodies and associated complications with surgical correlation. Radiographics 2001 21:1251-1256. [PubMed]
  9. Jon A. Jacobson, Powell A, Craig JG, Bouffard JA, van Holsbeeck MT. Wooden foreign bodies in soft tissues. Radiology 1998 206: 45-48. [PubMed]
  10. Lisa D Mills, Christy Butts. Capturing elusive foreign bodies with ultrasound. Emergency Medicine 2009 36-42. [Website]
  11. Banerjee B, Das RKD. Sonographic detection of foreign bodies in the extremities.  Brit J Radiology 1991 64: 107-112. [PubMed]
  12. Soudack M, Nachtigal A, Gaitini D. Clinically unsuspected foreign bodies, The importance of sonography. J Ultrasound Med 2003 22:1381-1385.[PubMed]
  13. Crankson S, Oratis P, Al Mazaid G. Ultrasound in the diagnosis and treatment of wooden foreign bodies in the foot. 2004 Ann Soudi Med 24. [PubMed]
  14. Lyon M, Brannam L, Johnson D, Blaivas M, Duggal S. Detection of soft tissue foreign bodies in the presence of soft tissue gas. J Ultrasound Med 2004 23: 677-681. [PubMed]
  15. Turkcuer I, Atilla R, Topacoglu H, Yanturali S, Kiyan S, Kabakci N, Bozkurt S, Cevik AA. Do we really need plain and soft tissue radiography to detect radiolucent foreign bodies in the ED. American Journal of emergency medicine. 2006 24: 763-768. [PubMed]
  16. Orlinsky M, Knittel P, Feit T, Chan L, Mandavia D. The comparative accuracy of foreign body detection using ultrasonography. Am J Emerg Med 2000 18: 401-403. [PubMed]

Left Underlapping Third Toe in a Patient who Underwent Ventricular Assist Device Implantation: A Case Report and Literature Review

by Massimiliano Polastri, MSc, PT, Walter Trani, PT1, Mariano Cefarelli, MD2, Sofia Martìn-Suàrez, MD2

The Foot and Ankle Online Journal 5 (12): 2

This case report describes a rare abnormality of the forefoot in an adult who underwent implantation of a ventricular assist device. Toe deformities are not necessarily related to pain and/or functional foot limitations. An underlapping toe is a rarely, described disorder. Ventricular assist devices (VAD) are comprised of a set of tools that allows the system to substitute for the pump function of the heart in eligible patients. A 60-year-old Caucasian man affected by ischemic dilated cardiomyopathy underwent ventricular assist device implantation as a bridge to transplantation. The third toe abnormality reported here did not influence the ventricular assist device implantation or postoperative recovery in terms of exercising. An underlapping third toe can coexist in the presence of debilitating illness without causing particular physical difficulties.

Key words: Blood circulation, Forefoot, Gait, Heart transplantation, Quality of life, Rehabilitation, Toes abnormalities.

Accepted: November, 2012
Published: December, 2012

ISSN 1941-6806
doi: 10.3827/faoj.2012.0512.0002

Toe deformities are not necessarily related to pain and/or functional foot limitations. [1] Rare abnormalities such as overlapping toes are a condition for which there is no possibility for spontaneous improvement. [2]

In contrast, an underlapping toe is a rare and little-described disorder. Friend found that the fourth and fifth toes are the most involved in an underlapping toe abnormality even if the second or third toes are also affected. The combination of congenitally elongated toes and an acquired adductovarus is the major mechanism that produces this deformity. [3] Ventricular assist devices (VAD) are comprised of a set of tools that allows the system to substitute for the pump function of the heart in eligible patients.

The main body of the device includes a miniaturized titanium pump. The power cord of the device used in the case described here was connected to a titanium base fixed to the skull (parietotemporal). [4]

The system is powered by lithium and lead batteries—which have different durations—and is transported in a bag in a horizontal position so as not to cover the microphone alarm. Left ventricular assist devices (LVAD) are an effective strategy to prolong survival and improve quality of life. [5] The Interagency Registry for Mechanically Assisted Circulatory Support has been created to collect information about patients, devices, and outcomes, including adverse events.  [6] The main purpose of this report is to describe a rare abnormality of the forefoot in an adult who underwent implantation of a VAD.

Case Report

A 60 year-old Caucasian man affected by ischemic dilated cardiomyopathy underwent LVAD implantation (Jarvik Heart®, New York, NY, USA) as a bridge to transplantation. He had diabetes, dyslipidemia and was an ex-smoker.

He did not undergo myocardial revascularization after two episodes of acute myocardial infarction, and 8 years ago he was implanted with a single-chamber implantable cardioverter. The patient underwent pre-transplant screening for nearly 2 years. It was decided to apply a temporary LVAD due to his low cardiac ventricular function (ejection fraction, 22%) and significant pulmonary hypertension. This device has a compact axial flow impeller pump with an outflow Dacron graft for anastomosis to the descending thoracic aorta. The pump was inserted through a sewing cuff into the apex of the left ventricle. The adult model measured 2.5 cm in diameter by 5.5 cm in length. Its weight was 85 g with a displacement volume of 25 mL. The postoperative course was free of complications. Bilateral hallux valgus and an underlapping third toe on the left side were noted by observation of the patient in a standing position. (Fig.1) Deviation in the valgus of the right big toe was more evident, as was pronation of the first metatarsophalangeal joint (this condition probably avoided the hammer toe on the same side). The left foot was characterized by hammer toes (Fig. 2), and the congenital underlapping third toe was attached to the first toe through the distal portion of both toes. (Fig. 3)


Figure 1 Standing position. Right side: hallux valgus, hammertoes second to fifth. Left side: hammertoes first to fifth, hallux valgus, underlapping third toe.


Figure 2 Dorsal view of the left side: underlapping third toe.


Figure 3 Plantar view of the left side: the third toe is medially deviated (two red arrows) and attached to the first (four red arrows).

The patient had no difficulties ambulating and was free from pain. Thus, postoperative rehabilitation was centered on recovery of motor activity and reconditioning after the VAD implantation. The first line of the rehabilitative treatment in the sub-intensive setting was focused on encouraging the patient to perform exercises (even in a group) such as cycling, climbing stairs, and walking (even outside the pavilion); the patient’s performance of exercises was monitored. Furthermore, all motor activities were performed in association with respiratory exercises, such as deep breathing and incentive spirometry. The patient provided written informed consent for this study.


The absence of both foot pain and functional limitations at the initial examination was unexpected, but allowed the patient to adhere to the postoperative rehabilitation program, with excellent results. Augustine and Jacobs described hammertoes as the most common deformities of the foot. [7] Abnormalities of the forefoot, particularly in children are described in the literature. Smith, et al., found that an underlapping toe was common in a pediatric population of 44 newborns and proposed a simple algorithm for treatment. [8] In the mid-1960s, Greenberg discussed the possibility of resolving underlapping and contracted toes by plantar digital tenotomy, in the absence of shortening of the dorsal tissue and subluxation of the metatarsophalangeal. [9]

Similarly, Korn proposed a surgical approach for correction of a painful underlapping fifth toe and reported excellent outcomes of surgery. [10] Fattirolli, et al., discussed the importance of a customized rehabilitation program in patients undergoing VAD to enhance function and the quality of life. [4] A multidisciplinary approach is the ideal solution for long-term care during postoperative recovery. [11] Furthermore, the benefits of exercise training were reported by Bellotto, et al., who discussed the postoperative course of a patient with an implanted artificial heart. [12] Polastri investigated the role of postoperative rehabilitation after hallux valgus surgery, and surmised that a rehabilitative intervention is required to encourage both plantar pressure on the first ray and joint mobility. [13] If these are the objectives of hallux valgus surgery, what is advisable in terms of exercise in a case such as that we report here in which the deformities were not corrected? The answer to this question must consider the rationale of the treatment according to both the condition of the patients and their quality-of-life expectations. In fact, the patient described here was admitted so that his cardiac function issues could be addressed; the feet abnormalities (hallux valgus, hammer toes, and underlapping third toe) were an occasional finding of secondary importance considering his overall condition. The postoperative rehabilitation pathway, particularly in specialized settings, must be appropriate and centered on the patient’s needs with due consideration of their priorities. In this regard, the third toe abnormality reported here did not influence the VAD implantation or postoperative recovery in terms of exercising. The main limitation of this case report is the lack of quantification of the foot-joint deformities by means of range-of-motion measurements. However, the aim of this case study was to describe an unusual abnormality that does not require deep investigation. Furthermore, our findings should not be extended to a larger population. Nevertheless, this is to our knowledge the first report of feet deformities in a patient implanted with a VAD. In summary, an underlapping third toe can coexist in the presence of debilitating illness without causing particular physical difficulties.


1. Badlissi F, Dunn JE, Link CL, Keysor JJ, McKinlay JB, Felson DT. Foot musculoskeletal disorders, pain and foot-related functional limitation in older person. J Am Geriatr Soc 2005 53: 1029-1033. [PubMed]
2. Hulman S. Simple operation for the overlapping fifth toe. Br Med J 1954 2: 1506-1507. [PubMed]
3. Friend G. Correction of elongated underlapping lesser toes by middle phalangectomy and skin plasty. J Foot Surg 1984 23: 470-476. [PubMed]
4. Fattirolli F, Bonacchi M, Burgisser C, Cellai T, Francini S, Valente S, Sani G, F. Cardiac rehabilitation of patients with left ventricular assist device as “destination therapy”. Monaldi Arch Chest Dis 2009 72: 190-199. [PubMed]
5. Maciver J, Ross HJ. Quality of life and left ventricular assist device support. Circulation 2012 126: 866-874. [PubMed]
6. Rector TS, Taylor BC, Greer N, Rutks I, Wilt TJ. Use of left ventricular assist device as destination therapy in end-stage congestive heart failure: a systematic review. 2012, Washington (DC), Department of Veterans Affairs. URL: http://www.ncbi.nlm.nih.gov/books/NBK99059/pdf/TOC.pdf. [PDF] (accessed 18 August 2012). [Website]
7. Augustine DF, Jacobs JF.V Restoration of toe function with minimal traumatic procedures including advanced diaphysectomy. Clin Podiatry 1985 2: 457-470. [PubMed]
8. Smith WG, Seki J, Smith RW. Prospective study of a noninvasive treatment for two common congenital toe abnormalities (curly/varus/under lapping toes and overlapping toes). Pediatr Child Health 2007 12: 755-759. [PubMed]
9. Greenberg HH. Plantar digital tenotomy for underlapping and contracted toes. J Am Podiatry Assoc 1966 56: 65-66. [PubMed]
10. Korn SH. The lazy S approach for correction of painful underlapping fifth digit. J Am Podiatry Assoc 1980 70: 30-33. [PubMed]
11. Pistono M, Corrà U, Gnemmi M, Imparato A, Caruso R, Balestroni G, Tarro Genta F, Angelino E, Giannuzzi P. Cardiovascular prevention and rehabilitation for patients with ventricular assist device from exercise therapy to long-term therapy. Part II: long-term therapy. Monaldi Arch Chest Dis 2011 76: 136-145. [PubMed]
12. Bellotto F, Compostella L, Agostoni P, Torregrossa G, Setzu T, Gambino A, Russo N, Feltrin G, Tarzia V, Gerosa G. Peripheral adaptation mechanisms in physical training and cardiac rehabilitation: the case of a patient supported by a CardioWest total artificial heart. J Card Fall 2011 17(8): 670-675. [PubMed]
13. Polastri M. Postoperative rehabilitation after hallux valgus surgery: a literature review. FAOJ 2011 4(6): 4. [Website]

Address correspondence to: Massimiliano Polastri, Physical Medicine and Rehabilitation, Bologna, University Hospital Authority, Sant’Orsola-Malpighi Polyclinic, Via G. Massarenti, 9. 40138 –Bologna, Italy.

1  Physical Medicine and Rehabilitation, Bologna University Hospital Authority, Sant’ Orsola-Malpighi Polyclinic, Bologna, Italy.
2  Cardiac Surgery Department, Sant’ Orsola-Malpighi Polyclinic, Bologna University, Bologna, Italy.

© The Foot and Ankle Online Journal, 2012

Arteriovenous Malformation: An Unusual Reason for Foot Pain in Children

by Kunze, B.1 , Kluba, T.1, Ernemann, U.2, Miller, S.3

The Foot and Ankle Online Journal 2 (12): 1

The incidence of vascular anomalies is rare, and they are mainly localized in the head or upper extremity. We report the case of an 8 year-old boy with arteriovenous high-flow malformation of the foot. Presentations of diagnostic and therapeutic opportunities as well as post surgical clinical follow-up are included.

Key words: Arteriovenous malformation, angiography, foot, children.

Accepted: November, 2009
Published: December, 2009

ISSN 1941-6806
doi: 10.3827/faoj.2009.0212.0001

Vascular anomalies are classified into two main types: vascular malformations and benign vascular endothelium tumors. Vascular malformations (e.g. venous, arteriovenous and capillary malformations) are congenital abnormalities with manifestation during childhood or adolescence due to various stimuli (e.g. trauma, hormonal changes). They arise from defects in vascular tissue during embryonic development. Spontaneous regression of these anomalies is rare. Vascular tumours (e.g. haemangioma, Gorham-Stout-disease) are characterized by cellular hyperplasia and the expression of growth factors but they can also spontaneously become involuted. [1-6] “High” and “low-flow” malformations can be differentiated by their haemodynamic characteristics and the vascular architecture. [7,8]

Case Report

We report the case of an 8 year-old boy who presented in 2008 with a one-year history of progressive left foot pain and local swelling without previous trauma. Weight-bearing activities exacerbated the pain.

On clinical examination, a plantar soft tissue swelling with local paraesthesia and hypersensitivity was seen. The left foot was held in a relieving pes equinus posture.

Magnetic resonance imaging (MRI) of the foot was performed. The swelling showed up as a vascular malformation with high uptake of contrast medium which stretched out intrafascially, intramuscularly and subcutaneously from the metacarpophalangeal joints to the tarsal bone. (Figs. 1 and 2)

Figure 1 Sagittal MRI of the left foot with hypervascularized tumor on T2 (arrow).

Figure 2 MR image of the left foot with hypervascularized tumor on T1.

An open biopsy was performed and histological examination confirmed the radiological diagnosis. To minimize the trauma of treatment for the boy, selective percutaneous as well as endovascular transarterial embolisation of the malformation were discussed. After percutaneous puncture and illustration of the malformation by injection of contrast medium, a venous lacuna with a varicose vein of plantar venous arc was seen. (Fig. 3)

Figure 3 Percutaneous puncture and illustration of the malformation by injection of contrast medium.

Additionally in projection of the third toe a high-flow arteriovenous malformation was depicted supplied in an en-passant fashion by an interdigital artery and arteries to the back of the foot. (Fig. 4) Due to these arterial collaterals a percutaneous embolisation was not performed because of the risk of necrosis of the toe.

Figure 4 Percutaneous puncture and illustration of the malformation by injection of contrast medium.

During the course of further treatment planning MR angiography was performed and revealed a hypertrophy of the posterior tibial artery and of the lateral part of the plantar artery. The distal part of Ramus profundus of A. plantaris medialis was the focus of the malformation after its passage through the abductor hallucis.

Expected circulatory disturbance of the third toe and the probability of an incomplete occlusion of the malformation using transarterial embolisation limited the therapeutic options.

Finally, marginal surgical resection of the malformation was performed. Histological examination confirmed the diagnosis of arteriovenous malformation with a central thrombus.

Only eight weeks after surgery, the boy could bear his full weight on his foot and the local pain as well the swelling were significantly reduced. (Fig. 5) At the one year follow-up the boy had returned to sporting activity. No signs of local recurrence were evident.

Figure 5  Clinical control six months after surgery.


Vascular anomalies occur with an incidence of 1-10/100000. They are apparent in 1 – 2.6% of neonates. [9] Cephalic localizations are most common, followed by the trunk, lower and upper extremities. In rare cases vascular malformations may be part of a syndrome complex like Klippel-Trenaunay-Weber and Sturge-Weber syndromes or genetic disorders, so when evaluating these abnormalities a family history should be performed. [10,11,12]

The presented case describes a high-flow arteriovenous malformation of the foot. This localization appears to be rare with only few reports in literature.

Whereas a third of vascular tumors (e.g. haemangioma) are visible at birth, the remaining 70% appears in the first years of childhood. They are characterized by a rapid growth in the first years but can also spontaneously become involuted.

In contrast, congenital malformations increase in size as the child grows. [13] According to their pathophysiology and vascular architecture low flow and high flow malformations are distinguished. Low flow lesions comprise capillary, lymphatic and venous malformations. High flow arteriovenous malformations are characterized by a high blood flow in a direct connection between arteries and veins without capillaries. The Schobinger staging system of arteriovenous malformations includes four grades of severity: dormancy, expansion, destruction and decompensation. [14] Clinical manifestation may occur during adolescence and due to various stimuli (e.g. trauma, hormonal changes).

In the presented case, the cause of expansion and clinical manifestation could not be determined.

Depending on the localization, arteriovenous malformations present with different symptoms: local pain, swelling, skin ulceration, length discrepancy of extremities or severe bleeding with neurological complications. [13,15,16] After clinical examination further diagnostic investigations are recommended. Useful non-invasive methods to define the extent of the lesion are ultrasonography and duplexsonography. Additional non-invasive imaging modalities are magnetic resonance imaging and MR angiography including dynamic sequences with high temporal resolution. Transarterial catheter angiography is required in order to visualize the architecture of the vascular malformation and the arterial supply and venous drainage of the surrounding structures prior to treatment. [7,17,18,19,20] Depending to the extension of the malformation and the associated involvement of surrounding tissue, minimally invasive interventions or surgical resection may be necessary.

This report describes an unusual localization of an arteriovenous malformation. Nevertheless, the possibility of its existence should be considered in cases with the symptoms presented here. To facilitate rapidly diagnosis and to avoid unnecessary treatment, interdisciplinary therapy is recommended.


1. Mulliken JB, Glowacki J: Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast ReconstrSurg (69): 412 – 422, 1982.
2. Landthaler M, Hohenleutner U: Zur Klassifikation vaskulärer
Fehl- und Neubildungen. Hautarzt (48): 622 – 628, 1997.
3. Willenberg T, Baumgartner I: Vascular birthmarks. Vasa 37(1): 5 – 17, 2008.
4. Enjolras O, Mulliken JB: Vascular tumors and vascular
malformations (new issues). Adv Dermatol (13): 375 – 423, 1997.
5. Stäbler A, Freyschmidt J: Vaskuläre Tumoren – Handbuch
diagnostische Radiologie 2. Springer Berlin Heidelberg.
299 – 311, 2005.
6. Enjolras O, Wassef M, Chapot R: Introduction: ISSVA
Classification. Cambridge University Press. Excerpt from
Color Atlas of Vascular Tumors and Vascular Malformations. 2007.
7. Ernemann U, Hoffmann J, Breuninger H, Reinert S, Skalejet M: Interdisziplinäres Konzept zur Diagnostik und Therapie gefäßreicher Fehlbildungen im Gesichts- und Halsbereich. Mund Kiefer Geschtschir (6): 402 – 409, 2002.
8. Ernemann U, J. Hoffmann J, Grönewäller E, Breuninger H. Rebmann H, Adam C, Reinert S: Hämangiome und vaskuläre Malformationen im Kopf- und Halsbereich:
Differentialdiagnostik, Klassifikation und Therapie. Radiologe
(43): 958 – 966, 2003.
9. Holmdahl K: Cutaneous hemangiomas in premature and
mature infants. Acta Paediatrica Scandinavica. 1955; 44: 370, 1955. In Schwartz RA, Lin, RL, Wei, TJ: Arterial vascular malformations including hemangiomas and lymphangiomas. eMedicine Pediatrics, 2006.
10. Finn MC, Glowacki J, Mulliken JB:Congenital vascular
lesions: clinical application of a new classification. J Pediatr
Surg 18 (6): 894 – 900, 1983.
11. Enjolras O, Logeart I, Gelbert F: Arteriovenous malformations: a study of 200 cases. Ann Dermatol Venerol. 127 (1): 17 – 22, 2000.
12. Revencu N, Boon LM, Mulliken JB: Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 29(7): 959 – 965, 2008.
13. Schwartz RA, Lin RL, Wei, TJ:. Arterial vascular malformations including hemangiomas and lymphangiomas. eMedicine Pediatrics. 2006
14. Schobinger RA. Diagnostische und therapeutische
Möglichkeiten bei peripheren Angiodysplasien. Helv Chir Acta.
38 (3): 213 – 220, 1971.
15. Enjolras O, Chapot R, Merland JJ. Vascular anomalies and
the growth of limbs: a review. J Pediatr Orthop B 13(6): 349 – 357, 2004.
16. Enjolras O, Deffrennes D, Borsik M, Diner P, Laurian C: Les tumeurs vasculaires et les regles de laprise en charge chirurgicale. Ann Chir Plast Esthet 43 (4): 455 – 489, 1998.
17. Enjolras O, Mulliken JB. The current management of
vascular birthmarks. Pediatr Dermatol 10(4): 11 – 313, 1993.
18. Herborn CU, Goyen M, Lauenstein TC, Debatin JF, Ruehm SG, Kröger K: Comprehensive Time-Resolved MRI of
peripheral vascular malformations. AJR 181: 729 – 735, 2003.
19. Donnelly LF, Adams DM, Bisset GS III: Vascular
malformations and hemangiomas: a practical approach in a
multidisciplinary clinic. AJR 174: 597 – 608, 2000.
20. Watanabe Y, Dohke M, Okumura A: Dynamic subtraction contrast-enhanced MR angiography: technique, clinical applications, and pitfalls. Radiograph 20(1): 135 – 152, 2000.

Address correspondence to: Dr. Torsten Kluba
Department of Orthopaedics, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany. Email: Torsten.Kluba@med.uni-tuebingen.de
Tel.+ 49 7071 2986685,Fax + 49 7071 294091.

Department of Orthopaedics, University of Tuebingen Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
Department of Neuroradiology, University of Tuebingen Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
Department of Radiology, University of Tuebingen Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.

© The Foot and Ankle Online Journal, 2009

Congenital Variations Discovered in the Clinical Presentation of Hyperkeratosis of the Hand and Foot: A report of 2 cases

by Al Kline, DPM1

The Foot & Ankle Journal 2 (1): 3

Case presentations describing a congenital variation of palmoplantar keratosis are presented. The majority of these conditions are autosomal dominant with associated nail dystrophy. A variant condition is described with little palmar keratosis; however, finger nail and toe nail dystrophy is the most common identifying feature. Gene identification and treatment protocol are presented. Fortunately, these conditions are rare. A good knowledge of these conditions will help in proper diagnosis and treatment.

Key words: Palmoplantar keratosis (PPK), hand, foot, congenital, hyperkeratosis

This is an Open Access article distributed under the terms of the Creative Commons Attribution License.  It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ©The Foot & Ankle Journal (www.faoj.org)

Accepted: December, 2008
Published: January, 2009

ISSN 1941-6806
doi: 10.3827/faoj.2009.0201.0003

Congenital hyperkeratosis is an uncommon condition of the foot. There are a number of congenital conditions that cause hyperkeratotic lesions of the foot. Fortunately, these conditions remain rare in the population. These lesions can be divided into diffuse and punctuate. There is also a subclass of hereditary diseases defined as either epidermolytic or nonepidermolytic. Conditions characterized by palmoplantar keratosis (PPK) are the most causes of congenital hyperkeratosis. These conditions include Unna-Thost disease, Vohwinkel’s syndrome, Papillon-Lefèvre syndrome and pachyonychia congenita. [1,2,3,4]

Unna-Thost disease was first described in 1880 by Herrmann Arthur Thost and again described in 1883 by Paul Gerson Unna. [5,6,7] Synonyms for the disease include Brünauer-Fuhs-Siemens syndrome, Brauer’s syndrome and Brünauer’s syndrome. [7] It is a disease of autosomal dominant origin characterized by severe palmoplantar keratosis. Deep fissures and hypohidrosis with thickened skin of the palms of the hands and soles of the feet usually occur within the first year after birth. [1] Vohwinkel’s syndrome or keratoderma hereditaria mutilans is a rare autosomal dominant condition first described in 1929. [2] Clinical manifestations first appear in infants and then proceed through childhood into adulthood. Keratosis described as honeycomb and starfish-like in appearance is common. In the later stages of the disease, pseudoainhum or auto amputation of the digits can occur due to constricting bands of keratosis around the digit.

In fact, pseudoainhum is characteristic in a number of hereditary hyperkeratosis. [1,2,3,4] Papillon-Lefèvre syndrome (PLS), also known as Mal de Meleda , was first described by two French physicians in 1924. [3,8,9] It is an extremely rare genodermatosis inherited as an autosomal recessive trait, affecting children between the ages of 1-4. [3] Psoriatic-like plaques involving the palms, soles and elbows are described that worsen in winter and are often hyperhidrotic resulting in a foul odor. [3] Pachyonychia congenita (PC) is a rare genodermatosis that affects the nails of all the toes and fingers. [4] Other names and synonyms of this condition are called congenital dyskeratosis and pachyonychia ichthyosiformis.

Most cases appear within the first or second years of life, although cases of late onset have been reported in the second and third decades. (which is termed PC tarda) [4] Diagnostic features include symmetrical thickening of skin, dysmorphic nails and hyperkeratotic skin lesions. The disease fits into two major types: Jadassohn-Lewandowsky syndrome (JLS-1) and Jackson-Lawler syndrome (JLS-2). It is an autosomal dominant trait. Some recessive forms have been described. JLS-1 is characterized by nail hypertrophy, nail dystrophy, PPK, follicular keratosis and oral leukokeratosis and is the most common form of PC (56.2%). [4] JLS-2 usually lacks oral leukokeratosis and is commonly associated with epidermolytic bullae of the palms and soles (24.9%). [4]

Secondary symptoms are commonly associated with hereditary hyperkeratosis. This is called complex keratodermas. Unna-Thost disease is commonly associated with secondary fungal and bacterial infections. [1] Corneal opacities, pilitorti, hearing loss, hypohidrosis and dental abnormalities have also been described. [7]

Vohwinkel’s syndrome can be associated with deafness, cancer, cardiomyopathy and adrenal insufficiency. [2] PLS is often associated with severe periodontitis which usually starts at the age of three or four. [3] This is seen with gingivitis and rapid destruction of the periodontium when deciduous teeth proceed normally. Other associated conditions of PLS include pyogenic liver abscesses with impaired immunodeficiency. [3] The most common secondary associated symptom with PC is oral leukokeratosis with associated periodontitis and loss of teeth. [4] The teeth develop normally and are lost within 1 year.

Gene Identification

Often, the clinical presentation is not as straight forward as the texts present. Clinical evaluation can present with diffuse as well as punctuate keratodermas and associated nail dystrophy. Clinical diagnosis is usually made by presentation and secondary associated conditions in complex keratodermas.

Recent molecular biological studies indicate the presence of two variants of Vohwinkel’s syndrome, an ichthyosis-associated variant, associated with an insertional mutation of the loricrin gene, and a deafness-associated variant, associated with a missense mutation of the connexin-26 gene. [2] In PLS, there is a reported loss-of-function mutation affecting both alleles of the cathepsin-C gene identified on chromosome 11q14.1-q14.3.3 In Pachyonychia congenita (PC) mutations in the KRT16 and KRT 17 gene encoding keratins K6a and K16 (KRT16) that can trigger JLS-1 and JLS-2 respectively have recently been identified. [4]

Case Studies

Case 1: A 9 year-old female presents to our office with diffuse and punctate hyperkeratosis of both feet. (Fig. 1) Clinically, the hyperkeratosis is located on the soles of both feet with associated severe nail dystrophy to all fingers and toes.


Figure 1  A 9 year old-female with severe plantar regions of hyperkeratosis (A and B).  The toe nails are severely dystrophic (C).  This condition began in infancy and is congenital.

Interestingly, there is little palmar hyperkeratosis. (Fig. 2) The patient’s father, grandmother and aunt are affected with the same condition. All have PPK with associated fingernail and toenail dystrophy and discoloration. The patient presented with the condition at birth. The patient’s grandfather and uncle are asymptomatic. The condition is characterized by extreme pain.


Figure 2  Although there is severe plantar congenital hyperkeratosis, the hands show very little palmar keratosis (A and B).

The patient’s father has been treated with narcotics for a number of years. Most of the adults in the family abuse tobacco. The father, grandmother and aunt have undergone multiple surgical debridements in attempts to reduce keratosis. This included surgical debridement of deep keratomas, removal of nail plates and beds and metatarsal head compression osteotomies and 5th metatarsal head resections. To date, surgery was only temporarily effective.

Retinoids were not used at the time. The family did not exhibit any complex symptoms and dentition was normal. No oral leukokeratosis was seen on examination. The entire family has diffuse hyperkeratosis and hyperkeratosis of all nails affecting both hands and feet symmetrically.

The daughter is now treated routinely treated with Retinoid creams, keratolytic agents, debridement and accommodative padding on a regular basis. It appears that most family members affected had the condition worse on the soles of the feet than the hands. Although there is very little palmar keratosis in the 9 year-old female, both the nails of the hands and feet are affected. The patient’s hands reveal discolored, dystrophic changes to the finger nails, but very little palmer keratosis.

Case 2: A 37 year-old female presents with severe plantar keratoderma and secondary inflammation and interdigital bacterial infection. She has allergies to iodine and seafood. The patient has diffuse plantar foot keratosis with nail involvement. (Fig. 3)


Figure 3  A 39 year-old female with diffuse keratosis to both feet (A).  Secondary infectious tinea is also observed along the medial border of the foot (B).  In this variant form, the hyperkeratosis is more diffuse rather than punctate along the soles of the feet. 

However, her hands appeared to be almost spared of the condition. There is some distal darkening just under the distal region of the finger nail. (Fig. 4).


Figure 4  As in case 1, this 39 year-old female has very little palmar keratosis.  Distal nail discoloration is observed (A and B).

Her family history shows that most family members were affected by the disease. Her grandmother had the condition, but not the grandfather. They had eight children, 4 boys and 4 girls.

All of the boys inherited the disease and only one girl. Three girls were unaffected. Her mother (who is unaffected) and father (who is one of the boys affected) had 2 boys and 4 girls. Of this group, her 2 oldest sisters have the condition and one brother is also affected.

Only one male was unaffected. Some of the siblings have the condition much worse than the others.


Treatment regimes are based on surgical techniques, medications and ancillary treatments designed to decrease painful keratosis. Surgical debridement or paring of keratosis is effective, but only temporary. Surgical bone debridement under regions of intense hyperkeratosis rarely works in our experience. There is very little information in the literature concerning full thickness surgical removal of tissue and skin grafting. Unfortunately, hyperkeratotic areas may return as soon as 1-2 weeks following simple debridement. Medications designed to improve PPK include keratolytic agents and oral or topical retinoids. The most common keratolytic agent used today is Vanamide®. Vanamide is a keratolytic, emollient cream designed to soften the skin. This can be used topically under occlusion for the best results. We have used Vanamide under occlusion for 3 or 4 days before the office visit. It helps most in the debridement of keratosis by softening or hydrating the region of hard keratosis. Vanamide’s main ingredient is 40% urea, so it is especially useful in nail as well as skin debridement. [10] Probably, the most widely used oral retinoid is Accutane or Isotretinoin. Retinoids are a class of medications derived from vitamin A and used to treat various skin conditions from psoriasis to warts to skin cancers. Oral retinoids were first released for use in the United States and Europe in 1982. [11] Oral accutane is most commonly used for cystic acne. Etretinate and Acitretin are more commonly used in the treatment of hyperkeratosis. [11] Oral retinoids should be carefully used in females. The drugs are teratogenic causing serious birth defects.[11] However, when carefully used, they have been found to be very effective in the treatment of various PPK disorders. [2] There have also been reports of elevated liver enzymes while taking oral retinoids, so careful monitoring of the liver enzyme panel is recommended. [11]

Topical and ancillary treatments can include saline soaks, topical Vaseline under occlusion, adding bleach to bath water, antibacterial soaps and a host of others too numerous to mention.


Hereditary hyperkeratotic disorders appear to be heterogenous in nature. In the case studies presented, the autosomal dominant gene has no predilection for males or females and is randomized, passing the trait to some siblings while sparing others. Autosomal dominant carriers have a 50:50 chance of passing this gene on to their siblings and the individuals spared will not have the ability to pass on this disease and will not be carriers. [12] It also appears that genetic polymorphisms and mutations continue to occur in varied cases. This would explain why some individuals have the condition worse and some have milder forms of the disease. It can be safe to say that the majority of PPK disorders can have variant forms and severity. As varied as this disease can present, treatment results can also vary. We have found that aggressive debridement with use of topical keratolytics with oral retinoids provide some of the best results. Surgical procedures should only address regions that are most problematic and don’t respond readily to conservative treatment regimes. Educational instruction and understanding should include a thorough discussion with your patients that results can vary and may be unsuccessful or only temporary. Discussing the disease and treatment options will enable better care of the patient with this frustrating condition.


1. Kline A. Keratotic lesions of the footH. Podiatry Internet Journal 1 (1): 8, 2006.
2. Bari AU. Keratoderma hereditarium mutilans (Vohwinkel syndrome) in three siblings. Dermatology Online Journal. 12 (7): 10, 2006.
3. Janjua SA, Khachemoune A. Papillon-Lefèvre syndreom: Case report and review of the literature. Dermatology Online Journal. 10 (1): 13, 2004.
4. Caproni M, Fabbri P. Pachyonychia congenita Orphanet Encylopedia., (online PDF) accessed 21/12/2008.
5. Thost A. Über erbliche Ichtyosis palmaris et plantaris cornea. Dissertation. Heidelberg, 1880.
6. Unna PG. Über das Keratoma palmare et plantare hereditarium. Vierteljahrsschrift für Dermatologie und Syphilis. Wien. 15: 231, 1883.
7. Unna Thost Syndrome. Who named it? (online), accessed 21/12/2008.
8. Papillon MM, Lefèvre P. Deux cas de kératodermie palmaire et plantaire symétrique familiale (maladie de Meleda) chez le frère et la soeur. Coexistence dans les deux cas d’altérations dentaires graves.
Bulletin de la Société française de dermatologie et de vénéorologie. 4 (31): 82-87, 1924.
9. Papillon MM. Lefèvre syndrome. Who named it? (online), accessd 22/12/2008.
10. Vanamide Cream (online PDF) , accessed 21st December 2008.
11. Chan A, Hanna M, Abbott M, Keane R. Oral retinoids and pregnancy. The Medical Journal of Australia. 165: 164-167, 1996.
12. The Universe of Genetic Testing, online resource. [online] , accessed date 21/12/2008.

Address correspondence to: Al Kline, DPM
3130 South Alameda, Corpus Christi, Texas 78404.

1 Adjunct Clinical Faculty, Barry University School of Podiatric Medicine. Private practice, Chief of Podiatry, Doctors Regional Medical Center. Corpus Christi, Texas, 78411.

© The Foot & Ankle Journal, 2009

Chondromyxoid Fibroma of the Foot: An Uncommon Presentation

by Anil Thomas Oommen, MS (Ortho), DNB (Ortho)1 , Vrisha Madhuri, MS (Ortho), MCh (Ortho)2 , Noel Malcolm Walter, MD3

The Foot & Ankle Journal 2 (1): 2

We report a chondromyxoid fibroma of the proximal phalanx of the left third toe in a 35 year old woman, a rare site for this tumor. The radiological appearance of a trabeculated lytic lesion with sclerotic margins and soft tissue extension raised the possibility of other entities such as intraosseous epidermoid cyst, aneurysmal bone cyst, chondroblastoma, osteoid osteoma and chondrosarcoma as well as infections like pyogenic, tuberculous and leprous dactylitis. However the typical microscopic picture of lobules of cartilage separated by fibrocellular tissue and scattered osteoclasts confirmed the diagnosis. The tumor was successfully treated by curettage and bone grafting using a dorsal and plantar 2 incision technique and has no recurrence at 4 year follow up. In this article we present our experience with this case and discuss the differential diagnosis of a solitary lytic lesion in the phalanges of the toes.

Key words: Foot, chondromyxoid fibroma, cartilaginous tumor, lytic lesion toe, curettage

This is an Open Access article distributed under the terms of the Creative Commons Attribution License.  It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ©The Foot & Ankle Journal (www.faoj.org)

Accepted: December, 2008
Published: January, 2009

ISSN 1941-6806
doi: 10.3827/faoj.2009.0201.0002

A 35 year old housewife presented with a swelling on the dorsal aspect of the right third toe which had been present for 10 years with gradual increase in size. On examination an ovoid swelling measuring 1.5 x 1.5cm and extending from the metatarso-phalangeal joint up to the middle of the toe was noted. There was fullness on the plantar aspect of the third toe which extended to the web space on either side with the two adjacent toes being pushed aside as a result. Radiological examination revealed a trabeculated lytic lesion with sclerotic margins involving half the length of the proximal phalanx of the third toe. ( Fig. 1 )


Figure 1  Eccentric expansile well defined lytic lesion showing intra lesional trabeculae and  thinned medial cortex of the proximal phalanx of the third toe. Soft tissue swelling around the base of 3rd toe and widening of the webspaces is noted.

A needle biopsy was reported as benign cartilaginous tumor. Through a combined dorsomedial and plantar approach the soft tissue component was excised. The tumor was thoroughly curetted after making a window over the dorsomedial aspect of the proximal phalanx. The plantar approach was added to ensure complete clearance of soft tissue extension which was predominantly on the plantar aspect. The cavity was then filled with cancellous bone graft harvested from the ipsilateral proximal tibia.

Microscopic evaluation of the curetted tissue revealed a tumor composed of lobules of cartilage separated by fibrocellular tissue. (Fig. 2) Osteoclast-like cells were scattered along the interface between these tissues.(Fig. 3) There was no histological evidence of malignancy. At 4 years follow up there is no recurrence. (Figs. 4,5 )


Figure 2 Lobules of cartilage separated by fibrocellular tissue. (HPE H&E x 100)


Figure 3  Osteoclast like cells along the edge of chndromyxoid areas. (HPE H&E x 200)


Figure 4  Radiograph 4 years post op AP shows sclerosis and healed lesion.


Figure 5  Oblique radiograph showing healed lesion 4 years post op.


Chondromyxoid fibroma (CMF) is a rare neoplasm constituting less than 1% of all bone tumors. [1,2] It is derived from skeletal connective tissue cells which demonstrate the capacity to produce chondro-myxoid matrix in a distinctive histological pattern. The peak incidence is in the second and third decades of life. The most common bones affected are those of the lower extremities and in only 5% of cases are the toes involved. [2]

CMF in the long bones is usually metaphyseal and eccentrically located with well defined sclerotic margins on radiological evaluation. Lesions in the small bones are osteolytic with scalloped margins, an appearance which overlaps with Non-Ossifying Fibroma. Calcification within the lesion is visible in most cases. [3,4] There is attenuation, expansion or erosion of the overlying cortex. It usually occurs in the metaphyseal side of the growth plate which is situated proximally in the phalanges.

Intra-medullary tumours and tumour-like lesions of the toe phalanges are rare. Among benign lesions enchondroma is probably the most common and may be clinically and radiologically indistinguishable from CMF. [5]

The diagnosis can usually be made by biopsy because CMF is mostly myxoid and often has osteoclastic giant cells whereas enchondroma is generally more obviously cartilaginous and lacks giant cells. However a small biopsy may not have enough tissue for this distinction and in such instances the only diagnosis possible may be “benign cartilaginous tumour” as in this case. Other benign tumours or tumour-like lesions which may rarely occur in the toes include aneurysmal bone cyst, the closely related giant cell reparative granuloma, and true giant cell tumour all of which are histologically quite different from CMF. [5]

Chondroblastoma can be partially or largely similar to CMF microscopically but is virtually unknown in the toes. [2] Among malignant bone tumours chondrosarcoma can be histologically difficult to distinguish from CMF. For making this differentiation the x-ray is critical as the radiological appearance of chondrosarcoma is aggressive, unlike that of CMF. The toes are also an extremely uncommon site for chondrosarcoma.

Other than benign cartilage lesions, a few other tumors of the terminal digits should be considered in the differential diagnosis. A radiological diagnosis of intraosseous epidermoid cyst can be made in the presence of perilesional sclerosis with painless swelling. [5] A painful lesion with perifocal reactive sclerosis is suggestive of an osteoid osteoma and is easily distinguishable radiologically. [5]

Poorly defined lytic lesions can be associated with several pseudotumorous conditions such as osteomyelitis caused by Staphylococcus seen in diabetic patients. [5] Tuberculous and leprous dactylitis are other condition which are clinically seen as phalangeal lesions. [6] Radiologically the tuberculous lesion is central, lytic, cystic and expansive, and soft tissue extension may be seen. [5] These are easily distinguished histologically.

As our report shows, a needle biopsy is of great value in suggesting the diagnosis and can easily be carried out as an outpatient procedure. Conservative surgical treatment, such as curettage and bone grafting, appears to be ideal for CMF.

In conclusion, a wide range of entities, including CMF, needs to be considered when confronted with a lytic lesion in the toe phalanx. Radiological features may help in distinguishing these conditions. Histopathology and microbiology provide a definitive diagnosis. A thorough surgical clearance is required to avoid recurrence in CMF.


1. Fletcher CDM, Unni KK, Mertens F (eds). Pathology and Genetics of Tumours of Soft Tissue and Bone, WHO Classification of Tumours, IARC Press, Lyon: 243 – 245, 2002.
2. Wu CT, Inwards CY, O’Laughlin S, Rock MG, Beabout JW, Unni KK. Chondromyxoid fibroma of bone: a clinicopathologic review of 278 cases. Hum Pathol 29 (5): 438 – 446, 1998.
3. Schajowicz F , Gallardo H .Chondromyxoid fibroma (fibromyxoid chondroma) of bone. A clinico-pathological study of thirty-two cases.J Bone Joint Surg. 53B (2): 198-216,1971.
4. Sharma H.,Jane M J, Reid R. Chondromyxoid fibroma of the foot and ankle: 40 years’ Scottish bone tumour registry experience. Int Orthop. 30(3): 205 – 209, 2006.
5. Wang BY, Eisler J, Springfield D, Klein MJ. Intraosseous Epidermoid Inclusion Cyst in a Great Toe. A Case Report and Review of the Literature. Arch Pathol Lab Med. 27 (7): 298 – 300, 2003.
6. Olivieri .I.,Scarano E,Padula A,Giasi V,Priolo F. Dactylitis,a term for different digit diseases. Scand J Rheumatol. 35(5): 333 – 340, 2006.

Address correspondence to:Dr Anil Thomas Oommen MS(Ortho)Assistant Profressor,
Dept. of Orthopaedics, Unit 2
Christian Medical College Ida Scudder Road,Vellore 632 004.

1 Assistant Profressor, Department of Orthopaedics, Unit 2
Christian Medical College Ida Scudder Road,Vellore 632 004.
2 Profressor, and Head , Department of Orthopaedics, Unit 2
Christian Medical College Ida Scudder Road,Vellore 632 004.
3 Profressor, Department of Pathology,
Christian Medical College Ida Scudder Road,Vellore 632 004.

© The Foot & Ankle Journal, 2009