Tag Archives: hallux valgus (bunion)

Unilateral Versus Bilateral Same-Day Surgery Outcomes for Hallux Valgus: An Eight Year Prospective Cohort Study

by Jill Dawson, DPhil1emailsm, Michele Peters, PhD2emailsm, Crispin Jenkinson, DPhil3emailsm, Helen Doll, DPhil4emailsm, Grahame Lavis, BSc (Hons)5emailsm, Robert Sharp, MA FRCS (Ortho)6emailsm, Mark Rogers, FRCS (Ortho)7emailsm, Paul Cooke, ChM FRCS8emailsm

The Foot and Ankle Online Journal 5 (11): 2

Objective: To evaluate patient-reported outcomes and satisfaction 8 years following hallux valgus (HV) surgery and compare unilateral and bilateral cases.
Methods: Prospective Cohort with postal follow-up patient survey. Consecutively-recruited patients self-completed the Manchester-Oxford Foot Questionnaire (MOxFQ) ≤ 4 weeks before surgery. Of 91 patients proceeding to one-stage HV surgery (on 124 feet, 23 (18.5%) receiving further surgery), 69 (78%) of 88 eligible patients (representing 95/124, 77% feet: 43/95, 45.3% unilateral, 52/95, 54.7% bilateral) returned a follow-up questionnaire including the MOxFQ and standard satisfaction rating for surgical outcome around 8 years (range 7.4 to 8.9) later.
Results: Of 69 respondents, mean pre-operative age 49.8 (SD 12.5) years, 66 (95.7%) were female. Reporting on 95 feet, 78 (82.1%) patients were either ‘Very pleased’ (All 53/95, 55.8%; unilateral: 22/43, 51.2; bilateral 31/52, 59.6%) or ‘Fairly pleased’ (All 25/95, 26.3%; unilateral 13/43, 30.2; bilateral 12/52 23.1) with the outcome; with 17/95 (17.9%) ‘Not very pleased/very disappointed’. Change in all 3 MOxFQ scales showed a significant linear relationship with satisfaction ratings (ANOVA p<0.001). The MOxFQ pain scale showed greatest change (decrease in score) associated with being ‘Very pleased’ (mean (95% CI) reduction in score: Pain -48.0 (-42.8 to -53.2); Walking/Standing -38.4 (-32.0 to -44.8); Social-Interaction -43.1 (-36.9 to -49.4)
Conclusions: At 8 years following HV surgery, the majority of patients were pleased with the outcome. Simultaneous bilateral HV correction produced results that were no worse than unilateral correction. Change in the MOXFQ pain scale is particularly important in interpreting patients’ satisfaction with surgery.

Key Words: Foot pain, hallux valgus, bunionectomy, first metatarsophalangeal joint

Accepted: October, 2012

Published: November, 2012

ISSN 1941-6806
doi: 10.3827/faoj.2012.0511.0002


Hallux valgus (HV) is a common condition, particularly in women.[1,2] HV can present unilaterally or bilaterally and is characterized by lateral deviation of the big toe and medial deviation of the first metatarsal with progressive subluxation of the first MTP joint.[1] The condition can be painful and disabling and has been shown to have a detrimental effect on quality of life.[3]

It is one of the most common indications for foot surgery, where between a quarter and a third of patients are dissatisfied with the outcome[4]; although many factors can affect outcomes and satisfaction.[5]

The evaluation of outcomes following HV correction tend to represent a relatively short period (i.e. 12 months or less) following surgery with few studies involving validated patient-reported outcome measures.[4] Standardized patient-reported methods of assessing outcomes, (particularly those devised with patients’ input), reflect the patients’ rather than the clinicians’ perspective[6,4,7] and are independent of the surgical team.

Where HV is bilateral, the question of whether patients do better to have both feet treated at the same time, or not, has received some attention, although again, outcomes evaluation has tended to be relatively short-term and not patient focused.[8]

This paper presents patient-reported outcomes data based on a service evaluation survey conducted of consecutive patients who had received surgery for HV at one center, between 7 and 9 years previously, and who had provided baseline data prior to their surgery. Results are also broken down to compare patients who had unilateral versus bilateral HV surgery.

Methods

Local ethics committee approval was obtained (Applied and Qualitative Research Ethics Committee reference A02.009) for the original study;[9] postal service evaluation survey approved by the institution’s Integrated Governance Committee (August 2011).

At baseline 100 out of 111 consecutive patients were approached and consented to take part, 38 of whom were booked for bilateral HV correction. Of these, 91 (/100) patients proceeded to surgery, of whom, 33 (/91, 36%) had bilateral surgery (total=124 operations/feet). All surgery was completed on the one day (i.e. no 2-stage operations).

Prior to conducting the postal survey, patients’ current address details were checked through the hospital information system. Questionnaires were mailed together with cover letters and a stamped addressed envelope. Where any questionnaires were returned as ‘unknown’ the patient’s last known GP practice was contacted by a member of the foot and ankle surgical team. In all other cases of non-response after 4 weeks, a reminder letter was sent out with a second copy of the survey questionnaire.

Overall, 2 patients were known to have died and one had emigrated. Of the remaining 88 eligible patients, 69 (/88, 78%) returned a completed follow-up survey questionnaire, with no response obtained from a further 19 (/88, 22%) patients. Of the 69 respondents, 26 (38%) were bilateral cases who contributed outcome data regarding two foot (HV) operations. Thus 69 patients completed questionnaires regarding ~8 year outcomes for 95 operations/feet. Their mean pre-operative age was 49.8 (SD 12.5) years; 66 (66/69, 95.7%) were female. The mean period of follow-up (original operation date until date of survey completion) was 8.03 (SD 0.37, range 7.41 to 8.87) years.

Assessments

Patients completed the Manchester-Oxford Foot Questionnaire (MOxFQ) for each foot having surgery as well as the SF-36 general health survey (completed once per patient), at a pre-admission clinic, within 4 weeks prior to surgery. These measures were completed again as part of the 2011 postal survey.

The MOxFQ has previously been validated with patients undergoing HV surgery.[9,10] It was subsequently revalidated in a separate study involving all patients undergoing foot or ankle surgery in a 12 month period, at one regional center.[11,12] It contains 16 items, each with 5 response options, comprising 3 separate underlying dimensions: foot pain (5 items), walking/standing problems (7 items) and issues related to social interaction (4 items), including feelings of self-consciousness about foot/footwear appearance (‘cosmesis’).

Item responses are each scored from 0 to 4, with 4 representing the most severe state. The scale score representing each dimension is produced by summing the responses to each item within that dimension. Raw scale scores are then converted to a 0 to 100 point scale (100=most severe).

The SF-3613 contains 36 items and is a widely used generic health status instrument. It provides scores on 8 dimensions of health: physical functioning, social functioning, role limitations due to physical problems, role limitations due to emotional problems, mental health, energy/vitality, bodily pain and general health perceptions over the last 4 weeks. Scores for each dimension are produced by summing the responses to each item within that dimension and then converting the raw scores to a 0 to 100 point scale, (100= good health) general population norm set at 50, SD 10.

The postal survey also included a transition item, (‘How are the problems related to your foot now, compared to before your surgery?’, response options: no problems now, much better, slightly better, no change, slightly worse, much worse), and 3 questions regarding patients’ satisfaction with the outcome (‘Overall, how pleased have you been with the result of the surgery on your foot?’; ‘How pleased are you with the appearance of your foot?’; ‘How pleased are you with the range of shoes that you can wear?’); each with response options: ‘Very pleased’, ‘Fairly pleased’, ‘Not very pleased, ‘Very disappointed’.

The transition and satisfaction items were asked in relation to each foot that had received surgery approximately 8 years previously. Additional questions asked whether the patient had received further surgery on the same foot since the original operation, and whether or not the patient currently had a problem with their other (contralateral) foot. A surgeon also checked for details of any subsequent foot surgery via the hospital patient information system.

Statistical analysis

Power calculations had determined that a sample size of 100 would give 80% power to detect, at p<0.05, a difference in proportions of 25%-30% and a medium effect size of around 0.55 between two groups of equal size. Data analysis was undertaken within SPSS release 17.0.14 Data are presented as mean (SD) at each assessment and mean change (SD) from pre-surgery to 8 years post surgery (post-surgical score minus pre-surgical score), with paired t-tests used to assess the statistical significance of any observed change. Statistical significance was taken at the 5% level throughout.

Some analyses (e.g. patient characteristics and SF-36 outcomes) have been conducted at the level of the patient (n=91 who had surgery, n=69 questionnaire respondents), while analyses of foot-specific outcomes and satisfaction with surgery have been conducted at the level of the foot (n=124 foot operations, involving n=95 completed questionnaires). Since 26 patients had bilateral operations, (which threatened the independence of patients’ observations on their two individual feet), baseline analyses were repeated three times: on the data for left feet only (n=61/124, 49.2%), right feet only (n=63/124, 50.8%), and for both feet (n=124; with 52 patients contributing data for both left and right feet). The results were, in fact, very similar for all analyses, and thus only the analyses that combined data for left and right feet are presented here.

The effect size (ES) statistic has been used to demonstrate the magnitude of change detected by the different outcome measures. This is calculated by dividing the mean change in scores (post-surgical score minus pre-surgical score) by the pre-surgical SD, this standardization by the SD allowing direct comparison to be made between instruments with different scales.[15]

An ES of 1.0 (or -1.0 for scales in which improvement is associated with a decrease in score) is equivalent to a change of one SD in the sample. Values of 0.2, 0.5 and 0.8 are typically regarded as indicating small, medium and large degrees of change, respectively.[15,16]

The relationship between MOxFQ change scores and four levels of response on the satisfaction with surgery rating have been explored using analysis of variance (ANOVA) test for linearity and Tukey post-hoc tests.

Results
Survey respondents versus non-respondents

Survey non-respondents were somewhat more likely to be male, younger, and employed, than respondents (no differences were statistically significant), but were no more likely to have received bilateral surgery on the original operation date. Respondents and non-respondents did not differ significantly with regard to the type of surgery that they received (Foot level analysis/ Respondents: Scarf procedure, with or without Akin 57/68, 83.8%; chevron 8/68, 11.8%; ’another form of surgery’ 3/68, 4.4% versus Non-respondents: Scarf procedure, with or without Akin 17/21, 81.0%; chevron 4/21, 19.0%; ’another form of surgery’ 0/21, 0%); or with regard to the need to have subsequent surgery (including revision) to the same foot (Foot level analysis/ Respondents 17/95, 17.9% versus non-respondents 6/29, 20.7%). Respondents’ pre-operative MOxFQ scores were all somewhat higher (worse) than those of non-respondents, particularly for the Walking/standing scale, although they did not differ significantly [MOxFQ Walking/standing (W/S), Pain and Social-Interaction (SI) scores: Respondents’ mean (SD) scores: W/S 47.3 (25.5); Pain 55.3 (17.8); SI 47.7 (22.5) versus Non-respondents’ mean (SD) scores: W/S 38.5 (21.2); Pain 49.8 (22.6); SI 43.8 (22.2).]

Unilateral versus Bilateral patient characteristics

There were no significant differences in the characteristics of patients who received unilateral versus bilateral surgery in relation to age, sex, qualifications or work status. Unsurprisingly, while 15 of the 43 patients having unilateral surgery reported having a problem affecting the contralateral foot (at baseline), all patients having bilateral surgery reported this (15/43, 34.9% versus 26/26, 100.0%; p<0.001).

Outcomes
Person-level analyses

Table 1 shows pre-, post-operative and change scores, plus effect sizes (ESs), for the generic SF-36, for all patients, and separately for patients having unilateral and bilateral surgery.

Overall, with the exception of the Pain domain (ES 0.7), most of the SF-36 domains showed small to moderate (in terms of ES) increases in score (i.e., improvement) compared with patients’ pre-operative baseline measures ~8 years previously. The largest improvements in health status (i.e. ES ≥ 0.4) were all highly significant (P ≥ 0.001).

SF-36 pre-operative scores were mostly slightly higher (better) in patients having unilateral, compared with those having bilateral surgery, although none of these differences were statistically significant (p value range 0.21 to 0.79). SF-36 scores were even more similar for unilateral and bilateral surgical groups when analyses were repeated after excluding patients who only had a unilateral foot problem at baseline (results not shown). Conversely, SF-36 post-operative scores were mostly lower (worse) in patients having unilateral, rather than bilateral surgery, although again, none of these differences were statistically significant (p value range 0.10 to 0.70).

8yrHAVTable1

Table 1 Mean pre-operative, 8 year post-operative and change values, plus effect sizes for SF-36 patient-reported sub-scales in all patients, and comparing those who received unilateral versus bilateral surgery to correct hallux valgus [Patient-level analysis].

8yrHAVTable2

Table 2 Mean pre-operative, 8 year post-operative and change values, plus effect sizes for MOxFQ patient-reported domains/sub-scales, representing all feet that received bunion surgery and comparing outcomes of operations that represented a unilateral versus bilateral procedures [Foot-level analysis].

8yrHAVTable3

Table 3 Aspects of patient-rated satisfaction 8 years following surgery to correct hallux valgus deformity [Foot-level analysis N=95].

The magnitude of the differences between the pre- and post-operative SF-36 scores, within the unilateral and bilateral groups, are shown most clearly by the ESs. (Table 1) Amongst those who had unilateral surgery, ESs for the SF-36 domains were all small (≤ 0.3) with the exception of the Pain domain, which was moderate (ES 0.6); while amongst those who had bilateral surgery, most of the SF-36 domains achieved moderate ESs (ES 0.5 to <0.8); although the ES for the Pain domain was large (ES 0.8).

A comparison of the SF-36 change score differences between the unilateral and bilateral surgical groups revealed differences to be statistically significant in 3 domains: Role Physical (Uni/Bi mean change, SD: 1.4, 30.5/ 20.7.30.7; p=0.02), Social Functioning (Uni/Bi mean change, SD: 3.6, 28.6/15.6, 21.6; p=0.03) and Mental Health (Uni/Bi mean change, SD: 3.6, 15.3/ 10.0, 12.4 p=0.004), with bilateral cases registering greater change on these scales than unilateral cases.

Foot level analyses

Within the period (~8 years) following the original operation, further surgery had been conducted on the same foot in 23 cases (23/124, 18.5%). Overall, each MOxFQ scale/domain registered a very large ES (WS -1.1, Pain -1.8, SI -1.3), representing decreases (i.e., improvement) from the pre-surgery baseline scores 8 years previously, with all related change scores highly significant (p<0.001). (Table 2) The magnitude of the differences/ changes between the pre- and 8 year post-operative MOxFQ scores within the unilateral and bilateral subgroups, are shown by the ESs. Amongst those who had unilateral surgery, ESs for all 3 MOxFQ scale domains were large (≥ -0.8); while ESs amongst those who had bilateral surgery, were slightly larger (ES ≥ -1.1). These changes over time were all highly significant.

A comparison of the change score differences between the unilateral and bilateral groups revealed very similar (and statistically insignificant) mean change scores for the differences in W/S and Pain scales, but the change scores did differ significantly for the SI domain, (which assesses aspects of work and social participation, footwear and ‘cosmesis’), with bilateral cases registering greater change on this scale than unilateral cases (Uni/Bilateral mean change, SD: -19.8, 29.4 versus -36.9, 25.5; p<0.01). The difference between these change scores (of 17.1 score points) was greater than the Standard Error of Measurement (SEM) (11.92 score points) that has previously been estimated for this scale.[10]

Patient satisfaction [per foot]

Table 3 reports patients’ responses to the transition and satisfaction items asked in relation to each foot that received surgery. Comparisons are made between responses that relate to a unilateral operation versus those relating to each foot comprising a bilateral (same day) procedure. Overall, more than half of the foot operations (53, 55.8%) were associated with patients being ‘Very pleased’ with the outcome of their surgery and a high proportion (78, 82.1%) were rated as either ‘Very pleased’ or ‘Fairly pleased’.

Three-quarters (72, 75.8%) of pre-operative foot problems were now reported as non-existent (‘No problems now’) or ‘Much better’. Poorer satisfaction ratings were given specifically in relation to the range of shoes patients could now wear (35, 36.8% ‘Very pleased’) and with the appearance of the foot (45, 47.4% ‘Very pleased’). Bilateral operations attracted the highest proportion of extremely positive satisfaction ratings across all 4 items, compared with unilateral operations, although none of these differences were statistically significant.

Relationship between patient satisfaction and foot outcome measures (MOxFQ)
[foot-level analysis]

Figures 1A and 1B show the mean 8 year post-operative MOxFQ W/S, Pain and SI scale scores and change scores respectively, together with 95% confidence intervals (CIs), broken down according to patients’ responses [‘Very pleased’, ‘Fairly pleased’, ‘Not very pleased’, Very disappointed’] to the satisfaction item: ‘How pleased are you now with the result of your foot surgery?’

Regarding post-operative MOxFQ scale scores (figure 1a), mean scores for all 3 MOxFQ scales that were associated with the most positive (‘Very pleased’) satisfaction rating (Mean, 95% CIs: W/S 8.8, 4.4 to -13.1; Pain 8.9, 5.1 to -12.8; SI 4.6, 1.9 to -7.3) were distinctly lower/better than scores associated with other responses to the satisfaction item with all patients who were ‘Very pleased’ with the outcome scoring <14 on each MOxFQ scale. Thus, there was also no overlap between 95% CIs for mean scores related to this response and those related to any other response. However, most of the 95% CIs associated with all other (less positive) ratings on the transition item overlapped.

Further analyses (ANOVA with testing for linear trend and Tukey post-hoc comparisons) confirmed significant linear trends in MOxFQ domain score across categories of response (p<0.001).

8yrHAVFig1a 8yrHAVFig1b

Figure 1A and 1B MOxFQ 8 year post-operative scores related to different levels of response concerning patient satisfaction.

In particular, however, post-operative MOxFQ scores associated with the ‘Very pleased’ response were significantly different (p<0.001) from scores associated with other ‘less pleased’ responses, while scores associated with these less pleased responses were generally not significantly different from each other.
Regarding MOxFQ scale change scores (figure 1b), mean change in the MOxFQ scales associated with the most positive rating (‘Very pleased’) to the satisfaction item was greatest in the Pain domain (Mean, 95% CIs: Pain -48.0, -42.8 to -53.2; W/S -38.4, -32.0 to -44.8; SI -43.1; -36.9 to-49.4). This change in the Pain domain was considerably greater than pain change scores associated with all other responses to the satisfaction item, with the 95% CIs not overlapping with those of any other category of response. This was not the case in relation to MOxFQ W/S and SI scales, where overlap of mean change score 95% CIs occurred across most levels of response to the satisfaction item. The response options ‘not very pleased’ or ‘Very disappointed’ represented small numbers of operations/feet and therefore associated mean MOxFQ change scores generally had wide 95% CIs which tended to overlap with 95% CIs for most of the MOxFQ change scores associated with other patient responses.

Further analyses (ANOVA, with Tukey post-hoc comparisons) confirmed that the change in the MOxFQ pain scale that was associated with the ‘Very pleased’ response was significantly different from pain changes associated with other ‘less pleased’ responses; while change scores associated with the less pleased responses were generally not significantly different from each other. Associations between changes in the MOxFQ W/S and SI scales and responses to the satisfaction item were found to be not so clear-cut, with change scores associated with the ‘very pleased’ response not significantly different from other responses, although change on the MOxFQ SI scale that was associated with the ‘very disappointed’ response was significantly different from changes associated with any other responses (p<0.001)

Discussion

This paper has presented standard patient-reported outcomes at around eight years following one-stage surgery for HV, based on a response rate of 78% to a postal survey and compared with patients’ pre-operative data. This is the first time that a validated foot-specific measure (the MOxFQ) has been used to evaluate and benchmark long-term outcomes following surgery for HV.

Just over a third of patients who received unilateral foot surgery reported having a problem (unspecified) with the contralateral foot at baseline, but otherwise the characteristics of these patients, which included their pre-operative general health status (SF-36) scores, did not differ significantly from those of patients having bilateral surgery. This suggested that ill health was not a likely explanation for patients with bilateral foot problems having unilateral, rather than bilateral, surgery.

An examination of pre-operative versus 8 year post-operative changes in patients’ health status showed that the 3 foot-specific domains of the MOxFQ detected changes that were much greater and more consistent than was the case for those detected by the generic SF-36 domains. This was unsurprising, as generic measures detect perturbations in health-related quality of life that can be due to any condition affecting any part of the body. Over time, the likelihood increases that symptoms related to a different condition (‘noise’) will arise that ‘drown out’ changes that are specific to the condition of interest. Nonetheless, in the current study, when comparisons were made between bilateral and unilateral cases, significant differences in changes between the two groups were detected by the SF-36, albeit by the Social Functioning, Role Physical and (in particular) Mental Health domains, and not by the more obviously relevant domains (i.e. Physical function or Pain).

Interestingly, when changes in MOxFQ scores were compared for bilateral and unilateral operations, it was the Social-Interaction scale, rather than the Pain or Walking-Standing scales that detected a large and significant difference between the two groups. The Social-Interaction scale addresses work/everyday and social/recreational activities, patients’ attitude to their foot appearance (‘cosmesis’) and wearable range of shoes, which overall construct chimes with aspects of the more Social-Psychological oriented SF-36 scales. The magnitude of the difference (in the S-I scale) observed between the two groups was greater than the SEM previously estimated for this scale. Changes greater than the SEM of a PROM are considered to be a real (ie. beyond the measurement error of the scale) and likely clinically relevant magnitude of change/difference when comparing outcomes between patient groups.[17]

A high proportion of the foot operations (over 80%) were associated with respondents being at least ‘Fairly pleased’ with the outcome of surgery. Bilateral operations attracted the highest proportion of extremely positive satisfaction ratings. Limitations in the range of shoes respondents could now wear (which could, of course, be influenced by either or both feet) and with their attitude to the appearance of their foot, since surgery, appeared important influences on patients’ satisfaction with the outcome of their surgery.

Few studies have investigated the medium to long-term outcomes of surgery for HV and those that have mostly used a retrospective design. Findings are also commonly restricted to reporting radiographic changes and a clinical assessment (e.g. the AOFAS hallux metatarsophalangeal (MTP)-interphalangeal (IP) rating,[18,19] although some have included a patient satisfaction rating (e.g. a visual analogue scale; or a question with ordinal response options).[20] One larger study, included 200 patient interviews to gain insights into patient satisfaction with the surgical outcome and with their pre-operative expectations.[6]

Findings here highlighted the importance of footwear problems, the alleviation of pain and restoration of adequate walking function as being the most important influences in the outcome of surgery for HV.[6]

Other studies have compared the results of unilateral versus simultaneous bilateral correction for HV. One, based on AOFAS scores, patient satisfaction rating and radiographic outcomes (follow-up period ‘at least 12 months’) concluded that simultaneous bilateral HV correction produced results that were no worse than unilateral correction.[21] Our own analysis of longer-term patient-reported data certainly supports this position.

References

1. Coughlin MJ. Hallux valgus. JBJS 1996 78A: 932-966 .  [PubMed]
2. Dawson J, Thorogood M, Marks SA, Juszczak E, Dodd C, Lavis G, Fitzpatrick R. The prevalence of foot problems in older women: a cause for concern. J Public Health Med 2002 24: 77-84. [PubMed]
3. Gilheany MF, Landorf KB, Robinson P. Hallux valgus and hallux rigidus: a comparison of impact on health-related quality of life in patients presenting to foot surgeons in Australia .  Foot Ankle Res 2008 1: doi:10.11186/1757-1146-1-14.[PubMed]
4. Ferrari J, Higgins JPT, Prior TD. Interventions for treating hallux valgus (abductovalgus) and bunions. DOI: 10.1002/14651858.CD000964.pub3. Cochrane Database Syst Rev 2009;(2):CD000964.5.
5. Dawson J, Coffey J, Doll H, Lavis G, Sharp RJ, Cooke P, Jenkinson C.  Factors associated with satisfaction with bunion surgery in women: a prospective study. The Foot 2007; 17:119-125. [Website]
6. Schneider W, Knahr K. Surgery for hallux valgus. The expectations of patients and surgeons. Int Orthop 2001; 25:382-385. [PubMed]
7. Parker J, Nester CJ, Long AF, Barrie J.  The problem with measuring patient perceptions of outcome with existing outcome measures in foot and ankle surgery. Foot Ankle Int 2003 24: 56-60. [PubMed]
8. Murray O, Holt G, McGrory R, Kay M, Crombie A, Kumar CS. Efficacy of outpatient bilateral simultaneous hallux valgus surgery. Orthopedics 2010; 33(6):394. [PubMed]
9. Dawson J, Coffey J, Doll H, Lavis G, Cooke P, Herron M, Jenkinson C.  A patient-based questionnaire to assess outcomes of foot surgery: validation in the context of surgery for hallux valgus.  Qual Life Res 2006 15:1211-1222. [PubMed]
10. Dawson J, Doll H, Coffey J, Jenkinson C; Oxford and Birmingham Foot and Ankle Clinical Research Group. Responsiveness and minimally important change for the Manchester-Oxford foot questionnaire (MOxFQ) compared with AOFAS and SF-36 assessments following surgery for hallux valgus. Osteoarthritis Cartilage 2007 15: 918-931.[PubMed]
11. Dawson J, Boller I, Doll H, Lavis G, Sharp R, Cooke P, Jenkinson C. The MOxFQ patient-reported questionnaire: assessment of data quality, reliability and validity in relation to foot and ankle surgery. doi:10.1016/j.foot.2011.02.002. Foot 2011 21:92-102. [PubMed]
12. Dawson J, Boller I, Doll H, Lavis G, Sharp R, Cooke P, Jenkinson C. Responsiveness of the Manchester-Oxford Foot Questionnaire (MOxFQ) compared with AOFAS, SF-36 and EQ5D assessments following foot or ankle surgery. JBJS 2012 94B: 215-221. [PubMed]
13. Ware-JE J, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992; 30(6):473-483. [PubMed]
14. SPSS Inc. SPSS (IBM) statistical software. Release 17.0. Headquarters, 233 S. Wacker Drive, 11th floor Chicago, Illinois 60606, USA.: SPSS Inc.; 2008.
15. Kazis LE, Anderson JJ, Meenan RF. Effect sizes for interpreting changes in health status. Med Care 1989; 27(3 Suppl):S178-S189.[PubMed]
16. Cohen J. Statistical power analysis for the behaviora] sciences. New York: Academic Press; 1997.
17. Wyrwich KW, Tierney WM, Wolinsky FD. Using the standard error of measurement to identify important changes on the Asthma Quality of Life Questionnaire. Qual Life Res 2002; 11:1-7. [PubMed]
18. Kitaoka H, Alexander I, Adelaar R, Nunley JA, Myerson MS, Sanders M. Clinical rating systems for ankle-hindfoot, midfoot, hallux and lesser toes. Foot Ankle Int 1994 15:349-353. [PubMed]
19. Fuhrmann RA, Zollinger-Kies H, Kundert HP. Mid-term results of scarf osteotomy in hallux valgus. Int Orthop 2010 34: 981-989. [PubMed]
20. Bhavikatti M, Sewell MD, Al-Hadithy N, Awan S, Bawarish MA.. Joint preserving surgery for rheumatoid forefoot deformities improves pain and corrects deformity at midterm follow-up. Epub ahead of print. Foot 2012. [PubMed]
21. Lee KB, Hur CL, Chung JY, Jung ST. Outcomes of unilateral versus simultaneous correction for hallux valgus. Foot Ankle Int 2009 30:120-123. [PubMed]


Address Correspondence to: Jill Dawson DPhil, Senior Research Scientist & University Research Lecturer, Department of Public Health, University of Oxford, Old Road Campus, Oxford OX37LF & Visiting Professor, Oxford Brookes University, Oxford. Email: jill.dawson@dph.ox.ac.uk

1,2Senior Research Scientist & University Research Lecturer1, Department of Public Health, University of Oxford, Old Road Campus, Oxford OX37LF & Visiting Professor1, Oxford Brookes University, Oxford
3Professor of Health Services Research, Department of Public Health, University of Oxford, Old Road Campus, Headington, Oxford OX37LF.
4Senior Medical Statistician, Department of Public Health, University of Oxford, Old Road, Oxford OX37LF.
5,6,7,8Consultant of Podiatric5 and Orthopaedic6,7,8 Surgery, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX37LD.

Dextrose Prolotherapy with Human Growth Hormone to Treat Chronic First Metatarsophalangeal Joint Pain

by Ross A. Hauser, MD1, Wayne A. Feister, DO2

The Foot and Ankle Online Journal 5 (9): 1

The metatarsophalangeal joint (MTPJ), formed by the metatarsal and phalangeal bones of the toes, is the location of common foot pathologies. The two most prevalent sources of pain in the MTP joint are the conditions of hallux valgus, a precursor to bunions, and hallux rigidus, stiffness in the big toe. A well-researched etiology (cause) for these conditions is ligament laxity. In this study, twelve patients were treated with a series of Dextrose Prolotherapy injections to stimulate the regeneration of tendons and ligaments and to promote the repair of articular cartilage. Upon completion of three-to-six therapy sessions, eleven of twelve patients had a favorable outcome—the relief of symptoms—with an average of four treatments. Based on such positive, verifiable results, Hackett-Hemwall Dextrose Prolotherapy can be viewed as a promising alternative to steroid injection, surgical repositioning (e.g., chevron osteotomy), or joint replacement.

Keywords: metatarsophalangeal joint pain, hallux valgus (bunion), hallux rigidus, hypermobility, ligament laxity, Prolotherapy, and human growth hormone (hGH)

Accepted: August, 2012
Published: September, 2012

ISSN 1941-6806
doi: 10.3827/faoj.2012.0509.0001


Chronic foot pain has reached epidemic proportions in the United States with over 40 million people reporting problems in their feet.[1] A typical cause of foot pain is deformity in the first metatarsophalangeal (MTP) joint, commonly called a bunion. The American Academy of Orthopaedic Surgeons reports, “more than half of the women in America have bunions, a common deformity…” and “nine out of ten bunions happen to women.” According to the AAOS, bunions are one of the most widespread, chronic foot complaints addressed by foot and ankle specialists.

Surgical reconstruction of this joint, therefore, is one of the most prevalent joint surgeries performed on the foot.[2] The two most prevalent causes of pain in the MTP joint are the conditions of hallux valgus and hallux rigidus, with hallux valgus being more and hallux rigidus less frequent.[3, 4] Hallux valgus, specifically, is a deformity that occurs when the big toe angles toward the other toes (Fig. 1).

Figure 1 Shows the location and the appearance of a bunion. (Reproduced with permission)

This shift in the toe leads to the formation of a bunion, a boney projection on the medial side of the toe that attempts to stabilize joint motion.[2] (Fig. 2) In addition to hallux valgus, hallux rigidus also afflicts the MTP joint. Hallux rigidus is the condition caused by degenerating cartilage in the MTP joint, which eventually leads to osteophytes (bone spurs) forming around the joint—the body’s attempt to stabilize the joint. The bone growth associated with hallux valgus reduces movement in both flexion and extension (compare Fig. 3 and Fig. 4) and thus leads to hallux rigidus and potentially the worst outcome, a frozen joint.[5]

Figure 2 X-ray image of a bunion.

Figure 3 Shows normal function of the MTP joint, go to www.drfosdick.com

Figure 4 Shows hallux rigidus in MPT joint, go to www.drfosdick.com

Studies indicate that these painful foot conditions affect various groups differently. One study estimates that 33% of adults who wear shoes show some degree of hallux valgus.[6] Other studies report that women are affected in greater numbers than the general population. In one study, Dawson found that 38% of fifty- to seventy-year-old women have bunions, which directly result from hallux valgus.[7, 8] Hallux valgus especially afflicts the elderly. Using a sample of seventy-one adults from 75 to 93 years, Menz and Lord reported that 70% have hallux valgus.[2] Also, those with congenital ligament laxity, including patients with Down’s syndrome, may be more prone to hallux valgus.[9]

This painful foot condition compels patients to seek a variety of prescribed, available treatments. All the patients in this study had had some other form of therapy before Prolotherapy. Among conventional therapies, surgery is often prescribed for hallux valgus and the resulting bunions. Torkki notes “hallux valgus surgery is among the most common orthopedic operations in Western industrialized countries”; roughly 209,000 hallux valgus surgeries are done annually in the United States.[10] Not only is surgery on the first metatarsophalangeal joint common, but it is also the fourth most frequent surgery, preceded by operations on the knee, hip and lower back.[2]

Despite the prevalence of hallux valgus and the number of surgeries performed, there is no consensus on optimal treatment choices. Currently, there are over 130 operative techniques used to treat hallux valgus, including Chevron osteotomy (Fig. 5), distal metatarsal osteotomy, arthrodesis, and Keller’s arthroplasty.[8, 11] A 2004 Cochrane Systematic Review found that no surgical technique was superior to any other. The Cochrane Review also notes that few studies exist on the value and performance of conservative treatments, and those show orthotics and splints to be ineffective.[12] In another review, Maffulli states “Data are lacking to allow definitive conclusions on the use of these [minimally invasive] surgical techniques for routine management of patients with hallux valgus.”[13]

Figure 5 Chevron’s Osteotomy

Due to a lack of consensus on the efficacy of surgery and other conservative treatments, patients are considering alternative methods, including Prolotherapy. Because first MTP joint pain—a common orthopedic ailment—is difficult to manage, this study investigated Dextrose Prolotherapy injections in order to establish the efficacy of this treatment with a study group and, subsequently, with patients afflicted with several painful conditions.

The term Prolotherapy was coined in the early 1950s by a trauma surgeon from Canton, OH, George S. Hackett M.D. In the introduction to Ligament and Tendon Relaxation Treated by Prolotherapy, Prolotherapy is defined as “…a method of injection treatment designed to stimulate healing.” [14] Specifically, Prolotherapy utilizes a variety of irritants in solution that are injected into the ligaments, tendons, and joints to encourage repair of damaged tissues. In the preface to the third edition, Hackett describes Prolotherapy as strengthening “the weld of disabled ligaments and tendons to bone by stimulating the production of new bone and fibrous tissue cells….”[14] Modern scientific research has shown that Prolotherapy initiates inflammation, which increases blood flow and growth factors to the injected area, thereby stimulating fibroblast activity and eventual ligament and cartilage maturation.

Many studies confirm Prolotherapy’s widespread use with orthopedic pathologies. Dr. Hackett himself published many scientific articles showing the efficacy of Prolotherapy for such conditions as ligament laxity, chronic low back pain, sacroiliac dysfunction, cervical spine pain, etc….[15, 16, 17, 18, 19] One of Dr. Hackett’s students, Gustav Hemwall, extended Hackett’s work by utilizing Prolotherapy in chronic musculoskeletal conditions, including those of the foot.[14] While published peer-reviewed research has documented Prolotherapy’s effectiveness for many musculoskeletal conditions, including athletic osteitis pubis, sacroiliac pain, anterior cruciate tears, low back pain, osteoarthritis, lateral epicondylitis, Achilles tendinosis, and chronic foot pain, among others, no study has yet documented its success treating chronic big toe pain.[14, 20] For this reason, studies are beginning to report on the treatment of the big toe with Hemwall-Hackett Prolotherapy. [21, 22, 23, 24, 25, 26, 27]

Methods

This retrospective study collected data from twelve patients—4 males and 8 females, ranging in age from 30 to 60, mean age of 50—with hallux valgus. Of the patients studied, 100% had tried alternative treatments, among which were splints, orthotics, and surgery. Exclusion criteria included age: no one under 18 could be a study participant.

Patients complaining of diffuse big toe pain were treated with Prolotherapy. To prepare patients, their vital signs were recorded; medical histories were obtained and documented. The treatment process began with a patient assuming a supine position on the table. Then 5% Lidocaine cream was applied to the area to be injected 10 – 15 minutes prior to the treatment. Once this time lapsed, the cream was removed with 3% hydrogen peroxide.

After this preparation process, the area was cleaned with Chloraprep® (chlorhexidine gluconate 2% and isopropyl alcohol 70%). Then a 15% Dextrose, 0.1% procaine, 10% Sarapin solution was injected into the following areas: the capsular ligaments; sesamoid bones; base of first metatarsal bone; the attachments of these two tendons—abductor hallucis and flexor hallucis brevis—to bone; and first metatarsophalangeal ligaments.

Using aseptic techniques, a 10 mL syringe was filled with a solution of 12.5% Dextrose solution and 1 IU of human growth hormone (hGH) for injection into the first metatarsophalangeal joint (intraarticular). Before injecting, air was expelled from the syringe through a 22-gauge needle. Though volume varied slightly, approximately 1 mL was used per injection. In each treatment session, the anterior, posterior, medial, and lateral portions of the MTPJ were injected 8 times with approximately 10 cc of solution. After treatment, patients were left to rest under moist heat for 10 – 15 minutes. The heat was removed, and the patient’s toe was cleaned with 3% hydrogen peroxide.

In the days following the procedure, patients were allowed to return to normal non-strenuous activities. Patients were advised to avoid such medications as ibuprofen, which block the inflammatory process. However, we did approve of the use of acetaminophen-based analgesia. Patients returned for treatment every four weeks, depending on their schedule, completing from 3 – 6 treatments.

Results

As for data collection, all twelve patients completed telephone follow-up within six months to two years, averaging 10.8 months after full treatment. In phone surveys, patients were asked to rate their toe stiffness, to record the number of pain pills taken, and to report any surgeries. Patients also assessed their own pain using Visual Analog Scale (VAS) scores, rating their pain from 0 to 10, 0 being no pain and 10 being constant, excruciating pain.

Using Microsoft Excel, data was compiled by an outside analyst. A paired student t-test was used, which evaluated measurements of pain, stiffness, and range of motion to determine the statistical significance of improvements.

After receiving injections, patients reported significant reduction in pain and stiffness. The big toe was treated in twelve participants. Though the mean number of treatments was 4.0, the range was 3 – 6 sessions. The average volume of solution injected per visit was 10.0 mL.

Figure 6 Survey responses before and after Prolotherapy on levels of pain with various activities.

Using the Visual Analog Scale (0 = no pain and 10 = crippling/severe pain), patients judged their pre- and post-treatment status on a number of issues: pain levels, stiffness levels, amount of numbness, and need for medications or surgery (Fig. 6). The before and after Prolotherapy VAS scores were compared using a paired student t-test. All p-values for pain were statistically significant at the p <0.0004 level.

Patients’ subjective experience of pain offers the best measure for statistical accuracy. Patients were asked to rate their pain levels on a scale of 0 to 10, with 0 being no pain and 10 being severe crippling pain. All 12 patients reported pain as a symptom. Thus, patients were asked to report pain levels before and after Prolotherapy in these three categories: 1) pain at rest, 2) pain with normal activities, and 3) pain with exercise.

Concerning 1) pain at rest: prior to Prolotherapy treatment, VAS pain levels averaged 4.42. None of the patients had a starting pain of less than two. After Prolotherapy treatment, VAS pain levels averaged 0.083. Only one patient reported a VAS pain level of 1, and all others reported zero.

Concerning 2) pain with normal activities: prior to Prolotherapy treatment, VAS pain levels averaged 6.50. Five of 12 patients could walk less than fifty feet without pain; seven of 12 could not walk a half-mile without pain; and ten of 12 could not walk a full mile. After Prolotherapy, all but one patient reported no restrictions in walking any distance without pain, and a VAS pain level of 1.17.

Concerning 3) pain with exercise: prior to Prolotherapy, five of 12 patients reported being severely compromised (only 0 to 30 minutes possible) in their ability to exercise, and a VAS pain level of 7.42. Of the twelve patients, two were totally compromised and unable to exercise; three were moderately (only 30 to 60 minutes possible). Over half of the patients were severely to totally compromised in their athletic abilities prior to treatment. After Prolotherapy, seven of 12 patients reported being able to exercise as much as they wanted without impediments and with satisfaction, with a VAS pain level of 1.58. Other physical improvements occurred, notably decreases in stiffness (from 4.92 to 2.08) and numbness (from 1.50 to 0.17).

When comparing the three previous categories before and after Prolotherapy, all reached a statistically significant outcome with a paired student t-test of p = <0.0004. This p-value confirms that the numerical results, when compared and tallied, exceed the mathematical probability of mere chance.

Thus, this retrospective study, without a control group, demonstrates that Hackett-Hemwall Dextrose Prolotherapy decreases pain and improves the quality of life for patients with metatarsophalangeal joint pain—unresolved by previous therapies, medications, and interventions. As a result of Prolotherapy, eleven of 12 patients reported a greater than 75% improvement in the activities of daily living that continued to the end of the study. Of the two patients who were told they needed surgery, both felt sufficient pain relief with Prolotherapy to avoid surgery. After the study period, patients experienced overall improvement in range of motion, ability to walk and exercise, as well as relief of stiffness and numbness/burning.

The questionnaire supplied one additional area of data: the use of pain medications. Before Prolotherapy treatment, seven took no pain pills for their condition; five took one to two pills daily. After treatment, one of 12 continued on medication.

Discussion

Since patients with hallux valgus may require different approaches, a variety of surgical options are offered because one is best suited for each specific type of hallux valgus.[28] Appropriate treatment selection, therefore, is not just a matter of choosing a good option; even a good choice can leave patients with ongoing problems.[28] In this regard, a Cochrane review notes that 25 – 33% of patients were dissatisfied at follow-up.[29] This high failure rate confirms the difficulty of selecting an appropriate treatment for hallux valgus—a difficulty that arises from the complex nature of this degenerative disease. Because Prolotherapy addresses many of the underlying causes of hallux valgus, its effectiveness as a treatment is more likely, making Prolotherapy a more reliable option.

Although Prolotherapy has a long history of treating pain, this study is the first to document its success as a treatment for chronic metatarsophalangeal joint pain. Three double blind studies establish a statistically significant improvement in osteoarthritis with Prolotherapy.[30, 31, 32] Prolotherapy’s apparent success with osteoarthritis and ligament laxity is encouraging, demonstrating its potential as a viable alternative to the traditional treatments of hallux valgus.

The mechanisms by which Prolotherapy decreases pain are multifactorial. Prolotherapy, a known stimulant for the regeneration of tendons and ligaments, also repairs articular cartilage and menisci.[33] In cases of osteoarthritis, Prolotherapy has been shown to return motion to painful joints, and in patients with severe dysfunction, to alleviate the need for joint replacement.[33, 34] As a comprehensive treatment, Prolotherapy is well-suited for metatarsophalangeal joint pain, which is also multifactorial.

The etiology of hallux valgus, for example, includes poor fitting footwear, bony abnormalities in the shape and length of the metatarsal head, foot pronation (flat-footedness), and inflammatory joint diseases.[9, 35] Due to Prolotherapy’s cascade of healing factors that regenerates tissues, the underlying factors that cause both hallux valgus and hallux rigidus can be remedied.

Specifically, the underlying condition of both hallux valgus and hallux rigidus is the instability that causes osteoarthritis of the MTP joint, initiating bone growth to stabilize the joint. (This growth in boney tissue occurs mainly on the medial side of the foot, producing the characteristic bump or bunion.) The instability that predisposes joints to osteoarthritis typically starts when ligaments and tendons supporting the joint become weakened or injured. Because the joint is no longer held in place by healthy ligaments and tendons, unstable joint motion develops and eventually exerts a strong pressure on parts of the cartilage. Then cartilage degenerates, which leads to a crunching and grinding joint. With time, the body reacts to this instability by contracting the muscles in the area. Eventually tense muscles get “knotted up” and finally release when they lose their strength due to fatigue. Because of this muscular failure, bone mass increases in an attempt to stabilize the joint. In a last ditch effort to recover joint stability with bone growth, a completely frozen joint occasionally occurs. Due to instability—pathological bone growth is what produces hallux rigidus. By re-growing cartilage and strengthening ligaments and tendons, Prolotherapy can stop the arthritic cascade, initiating a healing cascade that stabilizes the joint and reverses the degeneration to arthritis.

To enable this reversal and regeneration, Prolotherapy historically has utilized many solutions, but Dextrose has been proven to be a uniquely safe and effective irritant (sclerosant). Sclerosant is derived from the word “sclera,” which refers to the tough, fibrous white part of the eye and, thus, a sclerosant causes a toughening of injected tissues. Dextrose Prolotherapy is presumed to work by virtue of such mechanisms as direct contact, osmotic tissue absorption, and inflammation.

Practitioners of Prolotherapy realize that typical human cells contain 0.1% Dextrose (D-glucose). When injected with a concentrated glucose solution, tissues respond by increasing cellular protein synthesis, DNA synthesis, and cell volume—all components of cellular proliferation.[36, 37, 38, 39, 40] Introduction of extracellular Dextrose increases growth factors near the injection site. These growth factors include platelet-derived growth factor, transforming growth factor-beta (TGF-β), epidermal growth factor, basic fibroblast growth factor, insulin-like growth factor, and connective tissue growth factor, which are especially suited to the repair of tendons, ligaments, and soft-tissues.[41, 42, 43, 44, 45, 46] Furthermore, studies show that Dextrose-based injections stimulate inflammation, fibroblastic proliferation, and repair of articular cartilage defects. [47, 48, 49, 50, 51, 52, 53] Combined with 1 IU, human growth hormone (hGH) may be used to treat the MTP joint for increased cartilage growth. The connection between hGH and cartilage growth is readily apparent in those suffering from acromegaly, a condition whereby the pituitary gland secretes too much hGH that causes the growth of excess cartilage.[33]

Conclusion

As a treatment for MTP joint pain, Prolotherapy provides long-term relief, which may not be the case for other healthcare options. The efficacy of those options is not known, since follow-up in hallux valgus studies is often insufficient or nonexistent. Although many studies have been done on hallux valgus, the Cochrane review shows that the follow-up techniques used in these studies were considered of “dubious relevance” because they failed to accurately assess relief of symptoms.[54] In the material covered by the Cochrane review, only one study asked patients if they were better after surgery than before. In light of these findings, Kilmartin suggests, “future research should include patient-focused outcomes and follow-up periods of at least 5- to 10-years.”[54] This retrospective study on patients suffering from hallux valgus and hallux rigidus concentrated on patient outcomes—assessing pain, stiffness, and range of motion.

As a result of Prolotherapy, eleven of the twelve patients studied reported a greater than 75% improvement in the activities of daily living that continued to the end of the study. While not all of our study patients were contacted five years after treatment, 3 out of 12 patients reported a favorable assessment between 5- to -12 years after their final treatment. Given these preliminary positive results, Hackett-Hemwall Dextrose Prolotherapy’s potential for healing and regenerating tissues and not just for reducing pain makes it a promising, safe treatment option for chronic first metatarsophalangeal joint pain.

References

1. Coughlin M.J.: Women’s shoe wear and foot disorders West J Med 1995, 163(6): 569 – 570
2. Gilheany M, Landorf K, Robinson P: Hallux valgus and hallux rigidus: a comparison of impact on health-related quality of life in patients presenting to foot surgeons in Australia. J Foot Ankle Res. 2008, 1(1): 14.
3. Board T, Fox A, Barrie J: Foot and Ankle Hyperbook. East Lancashire Hospital NHS Trust. http://foothyperbook.com/elective/hr/halluxRigidusIntro.htm.
4. Hunt, K: Adult Foot Disorders: Common Ailments in “Experienced” Feet. Stanford Hospital Library. http://www.shlnews.org/?p=416.
5. Karasick D, Wapner K: Hallux rigidus deformity: Radiologic assessment. AJR Am J Roentgenol 1991, 157(5): 1029 – 1033.
6. Lam Sim-Fook, Hodgson A: A comparison of foot forms among the non-shoe and shoe-wearing Chinese population. J Bone Ft Surg 1958, 40A,1058
7. Dawson J, Thorogood, Marks S, Juszczak E, Dodd C, Lavis, Fitzpatrick R: The prevalence of foot problems in older women: a cause for concern. J Public Health Med 2002, 24(2): 77 – 84.
8. Ferrari J. Bunions.: Clin Evid (Online) 2009, pii: 1112.
9. Piqué-Vidal C, Sole M, Antich J: Hallux valgus inheritance: pedigree research in 350 patients with bunion deformity. J Foot Ankle Surg 2007, 46(3): 149 – 154.
10. Torkki M, Malmivaara M, Seitsalo S, Hoikka V, Laippala P, Paavolainen P: Surgery vs orthosis vs watchful waiting for hallux valgus. A randomized controlled trial. JAMA 2001, 285(19): 2474 – 2480.
11. Robinson AH, Limbers J: Modern concepts in the treatment of hallux valgus. J Bone Joint Surg Br 2005, 87(8): 1038 – 1045.
12. Ferrari J, Higgins J, Prior T: Interventions for treating hallux valgus (abductovalgus) and bunions. Cochrane Database Syst Rev 2004, (1): CD000964.
13. Maffulli N, Longo U, Marinozzi A, Denaro V: Hallux valgus: effectiveness and safety of minimally invasive surgery. A systematic review. Br Med Bull 2011, 97(1): 149 – 167.
14. Hackett G, Hemwall G, Montgomery G: Ligament and tendon relaxation treated by prolotherapy, 5th ed. Oak Park, IL: Gustav A. Hemwall, 1991.
15. Hackett G: Low back pain. Br J Phys Med 1956, 19(2): 25 – 35.
16. Hackett G: Shearing injury to the sacroiliac joint. J Int Coll Surg 1954, 22(6, part 1): 631 – 642.
17. Hackett G, Henderson D: Joint stabilization: An experimental, histologic study with comments on the clinical application in ligament proliferation. American Journal of Surgery 1955, 89: 968 – 973.
18. Hackett G: Back pain following trauma and disease – prolotherapy. Military Medicine 1961, 517 – 525.
19. Hackett G: Prolotherapy in whiplash and low back pain. Postgraduate Medicine 1960; February: 214 – 219.
20. Hauser R, Hauser M, Cukla J: A retrospective observational study on Hackett-Hemwall dextrose prolotherapy for unresolved foot and toe pain at an outpatient clinic in rural Illinois. Journal of Prolotherapy 2011, 3(1): 543 – 551.
21. Hiti CJ, Stevens K, Jamati M, Matheson G: Athletic osteitis pubis. Sports Med 2011, 41(5): 361 – 376.
22. Kim WM, Lee H, Jeong C: A randomized controlled trial of intra-articular prolotherapy versus steroid injection for sacroiliac joint pain. J Altern Complement Med 2010, 16(12): 1285 – 1290.
23. Grote W, Delucia R, Waxman R, Zgierska A, Wilson J, Rabago D: Repair of a complete anterior cruciate tear using prolotherapy: a case report. Int Musculoskeletal Med 2009, 31(4): 159 – 165.
24. Rabago D, Slattengren A, Zgierska A: Prolotherapy in primary care practice. Prim Care 2010, 37(1): 65 – 80.
25. Rabago D.: Prolotherapy for treatment of lateral epicondylosis. Am Fam Physician 2009, 80(5): 441 – 444.
26. Rabago D, Best T, Zgierska E, Ryan M, Crane D: A systematic review of four injection therapies for lateral epicondylosis: prolotherapy. Br J Sports Med 2009, 43(7): 471 – 481.
27. Yelland M, Sweeting K, Lyfogt J, Ng S, Scuffham P, Evans K: Prolotherapy injections and eccentric loading exercises for painful Achilles tendinosis: a randomised trial. Br J Sports Med 2011, 45(5): 421 – 428.
28. Robinson AH, Limbers J: Modern concepts in the treatment of hallux valgus. J Bone Joint Surg Br 2005, 87(8): 1038 – 1045.
29. Ferrari J, et al.: Interventions for treating hallux valgus (abductovalgus) and bunions. Cochrane Database Syst Rev 2004, (1): CD000964.
30. Reeves KD, Hassanein K.: Randomized prospective double-blind placebo-controlled study of dextrose prolotherapy for knee osteoarthritis with or without ACL laxity. Alternative Therapies, 2000;6: 68 – 79.
31. Reeves KD, Hassanein K.: Randomized, prospective, placebo-controlled double-blind study of dextrose prolotherapy for osteoarthritic thumb and finger (DIP,PIP, and trapeziometacarpal) joints: evidence of clinical efficacy. The Journal of Alternative and Complementary Medicine 2000, 6: 311 – 320.
32. Rabago D, Patterson J, Grettie J.: Dextrose prolotherapy for osteoarthritis knee pain: results of a blinded randomized controlled trial. American Academy of Orthopaedic Medicine meeting, Las Vegas, April 29, 2011
33. Hauser, R: The regeneration of articular cartilage with prolotherapy. Journal of Prolotherapy 2009, 1: 39 – 44.
34. Hauser, R, Hauser, Baird N, Martin D: Prolotherapy as an alternative to surgery. A prospective pilot study of 34 patients from a private medical practice. Journal of Prolotherapy 2010, 2(1): 272 – 281
35. D’Arcangelo PR, et al.: Radiographic correlates of hallux valgus severity in older people. J Foot Ankle Re 2010, 3: 20.
36. Reeves KD, Fullerton BD, Topol G.: Evidenced-based regenerative injection (prolotherapy) in sports medicine. In Seidenberg P, Beutler A (eds.) The Sports Medicine Resource Manual 2008, Saunders Publishing, Philadelphia PA, Chapter 50.
37. Natarajan R, Gonzales N, Xu L.: Vascular smooth muscle cells exhibit increased growth in response to elevated glucose. Biochemistry and Biophysic Research and Communication1992, 186: 552 – 560.
38. McGinn S, Poronnik P, King M.: High glucose and endothelial cell growth: novel effects independent of autocrine TGF-beta 1 and hyperosmolality. American Journal of Physiology and Cell Physiology 2003, 234: C1374 – C1386.
39. Berl T, Siriwardana G, Ao L.: Multiple mitogen-activated protein kinases are regulated by hyperosmolality in mouse IMCD cell. American Journal of Physiology 1997, 272: 305 – 311.
40. Caruccio L, Base S, Liu A.: The heat-shock transcription factor HSF1 is rapidly activated by either hyper- or hypo-osmotic stress in mammalian cells. Journal of Biochemistry 1997, 327: 341 – 347
41. Di Paloa S, Gesualdo L.: High glucose concentration induces the over expression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. American Journal of Pathology 1996, 149: 2095 – 2106.
42. Oh JH, Ha H, Yu MR.: Sequential effects of high glucose on mesangial cell transforming growth factor-beta 1 and fibronectin synthesis. Kidney International 1998, 54: 1872 – 1878.
43. Murphy M, Godson C, Cannon S.: Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. Journal of Biology and Chemistry 1999, 274: 5830 – 5834.
44. Fukuda K, Kawata S, Inui Y.: High concentration of glucose increases mitogenic responsiveness to heparin-binding epidermal growth factor-like growth factor in rat vascular smooth muscle cells. Arteriosclerosis Thrombosis and Vasculature Biology 1997, 17: 1962 – 1968.
45. Ohgi S, Johnson PW.: Glucose modulates growth of gingival fibroblasts and periodontal ligament cells: correlation with expression of basic fibroblast growth factor. Journal of Periodontal Research 1996, 31: 579 – 588.
46. Reeves KD.: Prolotherapy: injection of growth factors or growth factor production stimulants to growth normal cells or tissue. In Waldman SD (ed): Pain Management, Philadelphia, Elsevier 2006, pp. 1106 – 1127.
47. Sanchez M, Anitua E, Orive G.: Platelet-rich therapies in treatment of orthopaedic sport injuries. Sports Medicine 2009, 39: 345 – 354.
48. Jensen KT, Rabago DP, Best TM.: Early inflammatory response of knee ligaments to prolotherapy in a rat model. Journal of Orthopaedic Research 2008, 26: 816 – 823.
49. Kim HJ, Kim SH, Yun DH.: The effects of anti-inflammatory drugs on histologic findings of the experimental prolotherapy model. Journal of the Korean Academy of Rehabilitation Medicine 2006, 30: 378 – 384.
50. Ahn KH, Kim HS, Lee WK.: The effect of the Prolotherapy on the injured Achilles tendon in a rat model. Journal of the Korean Academy of Rehabilitation Medicine 2002, 26: 332 -336.
51. Oh S, Ettema AM, Zhao C.: Dextrose-induced subsynovial connective tissue fibrosis in the rabbit carpal tunnel: a potential model to study carpal tunnel syndrome. Hand 2008, 3: 34 – 40.
52. Kim HS, Jeong TS, Wim WS.: Comparison of histological changes in accordance with the level of dextrose-concentration in experimental prolotherapy model. Journal of Korean Academy of Rehabilitation Medicine 2003, 27: 935 – 940.
53. Kim SA, Kim EH, Kim SY.: The effects of hyperosmolar dextrose and autologous serum injection in the experimental articular defect of rabbit. Journal of the Korean Academy of Rehabilitation Medicine 2006, 30: 173 – 178.
54. Kilmartin TE, O’Kane C: Combined rotation scarf and Akin osteotomies for hallux valgus: a patient focused 9 year follow up of 50 patients. J Foot Ankle Res 2010, 3: 2.


Address correspondence to: Ross Hauser, MD, Caring Medical, 715 Lake St., Suite 600, Oak Park, IL 60301

1Medical Director, Caring Medical & Rehabilitation Services; Editor-in-Chief, Journal of Prolotherapy
2Private Practice, Medical Editor, Ohio University Clinical Assistant Professor, Bowling Green State University Adjunct Assistant Professor

© The Foot and Ankle Online Journal, 2012