Tag Archives: Talus

Talectomy (astragalectomy) and tibiocalcaneal arthrodesis following traumatic talus fracture-dislocation

The Foot and Ankle Online Journal 12 (2): 4

by Dr Alison Zander, MBBCh, BSc (hons), MSc (PHNutr)1, Mr Anirudh Gadgil, MBBS, M.S. (Orth), FRCS (Ed), FRCS (Trauma & Ortho)2, Derek Protheroe, BSc(Hons), MSc, PgDip3*

Talus fractures occur rarely but are often associated with complications and functional limitations. Urgent reduction of associated dislocations is recommended with open-reduction and internal fixation of displaced fractures when adjacent soft tissue injury permits [1]. However, it is important to remember that there is a high incidence of long term complications, along with a significant impact on activities of daily living and quality of life.  This case report describes the successful treatment of a severely comminuted talar fracture dislocation with primary talectomy and tibio-calcaneal arthrodesis. A reminder that in selected cases that the talectomy (astragalectomy) may be a viable alternative.

Keywords: talus, comminuted, tibiocalcaneal arthrodesis, fusion, talectomy, astragalectomy, trauma, avascular-necrosis, AVN

ISSN 1941-6806
doi: 10.3827/faoj.2018.1202.0004

1 – Foundation Doctor, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff
2 – Consultant Orthopaedic Surgeon, Cardiff and Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff
3 – Advanced Podiatry Practitioner, Prince Philip Hospital, Bryngwyn Mawr, Llanelli, Wales, SA14 8QF
* – Corresponding author: Derek.Protheroe@wales.nhs.uk


Talus fractures account for less than 1% of all fractures, they may be caused by high-energy trauma, and any other form of forced dorsiflexion injury to the ankle and foot [1]. Talar fractures may be classified anatomically as head, neck, body, lateral or posterior processes, displaced or non-displaced. A range of classifications have been established such as the original Hawkins, then modified by Canale & Kelly and then the Sneppe classification [2]. These sub-classifications help to guide treatment options[3]. Non-displaced fractures may be treated conservatively with a non-weight-bearing short-leg cast, whereas displaced fractures require open-reduction and internal fixation. Reconstruction after a talus fracture poses the greater surgical challenge if restoration of the articular surfaces is precluded secondary to comminution [4]. The talus is the second largest of the tarsal bones, with more than half of its surface being covered with articular cartilage, with no muscular attachments[1]. Therefore, the vascular supply of the talus is well-known to be tenuous, therefore predisposing the talus to significant ischemic injury after fractures [5]. Risk of post-traumatic avascular necrosis (AVN) increases with the magnitude of injury [6]. Extensive intraosseous anastomoses are present throughout the talus and are responsible for its survival during severe injuries. At least one of the three main anastomoses preserved may potentially allow adequate circulation via anastomotic channels [1].

Using the Hawkins’s classification system; 0-13% for grade I, 20-50% for grade II, 83-100% for grade III, and 100% for grade IV fracture dislocations result in AVN [1,6]. 

Clinical experience of talar fracture assessment and management is limited by their infrequent incidence, which is further exacerbated by the numerous sub-classifications of fracture, as previously alluded to. Case reports, although regarded as level V evidence can aid and develop an understanding of the risks and benefits of treatment options to achieve optimal patient outcomes [7].  Clinicians should maintain a high index of suspicion for AVN, which can only be diagnosed radiographically six to eight weeks following injury [8].  Furthermore, the potential for long term issues, such as hind-foot arthrosis and further revisionary surgery must be considered, alongside risks of repeated anesthetics for multiple procedures after complications. Approximately 25% of talus dislocations treated with internal reduction require additional surgery, including secondary arthrodesis [9].

Operative treatment measures for this area may be broadly split into two categories; joint sparing procedures – such as protected weight bearing, patella loading splints and bone graft or joint sacrifice procedures – such as talectomy and arthrodesis. Total talectomy and tibiocalcaneal arthrodesis may be viewed as a salvage procedure in this case report due to the case of severe comminuted fracture, where it may be impossible to anatomically reduce the talus and allow for adequate stable fixation. 

A literature search was performed using the keywords ‘talectomy’, ‘astragalectomy’, ‘fracture’, ‘tibiocalcaneal arthrodesis’ and Boolean search terms. Ovid SP databases (including embase & medline) was used with no exclusion dates to allow for a search of all historical literature. It appears that there was only one other reference in 1955 to such a procedure following a traumatic fracture to the talus body [10]. Historically, this case involved a Royal Navy soldier, where following a dislocated fracture a primary talectomy and tibiocalcaneal arthrodesis was performed.

Figure 1 Preoperative radiographs lateral and AP views.

Case Report

A sixty eight-year-old lady with no significant past medical history presented to Accident and Emergency.  She had been a seat-belted, front-seat passenger of a car that suffered a high-speed head-on road traffic collision.  She sustained a grade I (Gustilo-Anderson) open, comminuted fracture dislocation of the talus (Figure 1) with puncture wounds on the lateral aspect of the talus.  The foot was neurovascularly intact initially. The ankle was manipulated and back-slab applied. Apart from body ache and multiple minor abrasions and bruises there were no other injuries.  Whilst she was waiting on the ward to have a CT scan performed she developed increasing pain in foot, numbness of toes and sluggish capillary refill in the toes, which were not relieved even after removing the plaster slab.  She was counselled that she would need to be rushed to the operating room to attempt to reestablish circulation to her foot with a plan to open reduce the fracture and stabilize it. She was also made aware of the possibility of having to excise the fragments if it was not possible to operatively stabilize the fracture.

Procedure

Under spinal anaesthesia, antibiotic cover and usual sterile draping, the lateral puncture wounds were thoroughly debrided and lavaged with saline.  The fracture was exposed using an anterior approach between tibialis anterior and extensor hallucis longus, carefully protecting the neuro-vascular bundle throughout the procedure.  The displaced fracture fragments of the talus, the medial malleolus and the medial hematoma all appeared to have caused pressure on the posterior tibial neurovascular bundle. 

Figure 2 One year follow-up radiographs.

This was relieved after opening the fracture and the toes regained their color.  Intra-operatively, it became apparent that the fracture could not be anatomically reduced and fixated adequately due to the severe degree of comminution, and lack of any soft tissue attachments to the majority of the fragments. Hence, the original plan of anatomical reduction and internal fixation of the fracture was abandoned.  All loose fragments were excised, which involved removing all of the posterior process and body of the talus. Using the cancellous bone from the excised fragments as autogenous graft, the calcaneal and tibial articular surfaces were fused using three 7.5 mm cannulated AO screws (Figure 2). A small lateral malleolar avulsion fragment was excised.  The medial malleolus fragment was reduced and fixed with a cancellous 4mm AO screw (Figure 2). Post-operatively, the foot was observed to be well-vascularised. The lateral wounds were allowed to heal with regular dressings and a plaster of Paris splint was applied.  

Postoperative care protocol

Postoperatively, the patient received intravenous antibiotics for 24 hours, limb elevation for 48 hours and prophylactic anticoagulation for six weeks. Mobilization started with physiotherapy, consisting of non-weight bearing for six weeks, partial-weight bearing in air cast boot for two weeks and then allowed to fully-weight bear with an air cast boot.  The patient was advised to stop using the air cast boot at three months. The wounds healed well and there were no other complications.  

Outcomes

Due to the urgency of care required and history of trauma it was not deemed appropriate to use any form of patient reported outcome measure at the time of incident. However, the patient was reviewed frequently for eight weeks until the wounds healed. Then, accordingly, when she was allowed to weight bear, again at six months, one year and two years post-injury.  At six months, the patient had no pain or tenderness, with some dorsiflexion and plantar flexion possible at the mid-tarsal level. One-year follow-up showed that the tibio-calcaneal fusion was solid via plain x-ray (Figure 2). Final follow up at two years, she had a 2 cm shortening of her right leg measured in a weight bearing manner (measured blocks) and appropriate footwear adaptations were incorporated on the right side.  She is very happy with the outcome, has no pain and is fully mobile and weight bearing without support. 

Discussion

Talus fractures occur rarely and are commonly associated with complications and functional limitations [11].  The main complication being osteonecrosis, Vallier et al reviewed 100 talus fractures and reported osteonecrosis with collapse (31%), ankle arthritis (18%), subtalar arthritis (15%). Operative intervention was complicated by superficial (3.3%) and deep infection (5%), wound dehiscence (3.3%), delayed union (1.7%) and non-union (3.3%) [11]. Restoration of the axial alignment has been recommended to ensure optimisation of ankle and hindfoot function. It has been reported that tibiotalar and subtalar ranges of motion are reduced by up to 50% and arthrosis occurs in roughly 50% of fractures classified as Hawkins type III and IV [4]. The original paper proposing Hawkins classification even stated that comminuted fractures or those involving the body of the talus, were believed to be more problematic injuries and outside the scope of his original article [12].

A range of classifications for talus fractures exist, the most famous being the original Hawkins classification [2]. 

Historically, cases of talus injuries date as far back to as 1608. Interestingly, a term was coined known as ‘aviator’s astragalus’ due to its high frequency of injury in aircraft accidents [12]. The first case of talectomy for compound fracture was reported in 1609 by Hildanus  [13]. The patient had jumped over a ditch and turned his ankle on landing, causing the talus to dislocate completely out of the skin.  The talus was removed completely, following which the man was seen walking without apparent discomfort. In 1931, Whitman reported use of astragalectomy in correction of a calcaneus deformity of the foot [14]. Although these accounts are reported anecdotally, they demonstrate that the procedures used then are used in a similar fashion to case descriptions today. Talectomy has been used as a salvage procedure in correction of pathological deformity in conditions like  Charcot-Marie-Tooth, neglected idiopathic clubfoot, neurogenic clubfoot, cerebral palsy, gunshot wound, hemiplegia secondary to head trauma, Volkmann ischaemic contracture, poliomyelitis, arthrogryposis, myelomeningocele, and Charcot arthropathy  [15-18]. Talectomy has been used for patients with osteomyelitis or osteonecrosis of the talus [19,20]. We found only one study which reported 4 cases of total talectomy for Hawkins Type III fractures dislocations of talus in 1993 [21].  However, tibiocalcaneal arthrodesis was formally not carried out in the patients in this series.

Detenbeck and Kelley (1969) reported dire results following total dislocation of the talus in nine cases, of which seven were open [22]. Eight of the nine developed sepsis; seven required secondary talectomy, five with tibio-calcaneal fusion. This report highlights the serious consequences of this kind of injury. Their recommendations were to apply a more aggressive approach to initial treatment using talectomy and some form of tibio-calcaneal arthrodesis as the primary treatment for fracture-dislocation of the talus.  

Predominantly, cases of tibio-calcaneal (TC) arthrodesis are described for treatment of post-traumatic AVN of the talus or for treatment of rheumatoid arthritis [23-25]. Authors have reported TC arthrodesis of nine ankles in eight patients; seven were for post-traumatic talar AVN and one for rheumatoid arthritis [25]. Fixation was achieved using 6.5 or 7mm cannulated screws or multiple staples, with autologous cancellous bone graft.  Fusion was achieved in all patients between 12 and 40 weeks with a 2cm leg length discrepancy. Complications included local infection, malunion, wound dehiscence, prominent fibula and two patients required supplemental external fixation.  

In 1972, Reckling reported early TC fusion after displaced talus fractures in eight feet; Steinmann pins were used to achieve fixation without the use of bone grafting [26].  No wound complications were reported and bone union was achieved within 17 weeks. 

The main draw-back of TC fusion is the shortening of 2 to 3 cm that is produced in the limb.  It is also possible that secondary arthrosis of other joints of the foot may occur over time after TC fusion.

Using the technique of tibio-calcaneal fusion there is a potential to increase the calcaneal pitch angle. Intra-operatively, the surgeon must be careful to keep this in mind and achieve a well-aligned position of the foot. 7.5 mm cannulated AO screws were utilised providing stable compression across the fusion surfaces and encouraged rapid fusion of the inferior tibial surface to calcaneal articular surface.  There are other modes of fixation discussed within the literature such as intramedullary nail, pre-contoured plates or an external fixator. This would depend not only the surgeon’s experience and preference but in this case the setting (trauma) and clinical scenario due to the compromised blood supply.

Dennison et al treated six patients who had previous failed surgery and suffered post-traumatic AVN of the talus [27]. The necrotic body of the talus was excised and TC fusion achieved using an Ilizarov frame, combined with corticotomy and a lengthening procedure.   Patients were aged between 27 and 67 years. Shortening was corrected in four patients, and bony fusion achieved in all. Four out of six patients reported good or excellent results. 

Thomas and Daniels in 2003 reported using talonavicular and subtalar arthrodesis as a primary fusion to treat a three week old Hawkins type IV traumatic comminuted neck of talus fracture in a 29-year-old man [28]. Their case had similarities to ours, in that open reduction internal fixation had been planned, however, this was not possible anatomically due to the degree of comminution.  The patient underwent 16 months of follow-up and despite successful fusion without avascular necrosis, he was unable to return to his job as a roofer. 

Hantira et al reported treating a comminuted open fracture of the body of the talus on the same day of injury by tibio-talar fusion using the Blair technique [29].  Küntscher nails and cancellous screws remained in situ while the graft healed and they were removed at four and eight weeks post-surgery, respectively.  The patient started active and assisted foot exercises 14 weeks following surgery, with partial-weight bearing on crutches 20 weeks after the injury.  Fusion was complete at 10 months after injury and the patient was reportedly almost pain free.

Conclusion

The severity of talus fractures has increased over the last 3 decades due to modern safety equipment resulting in higher survival rates from serious accidents [2]. Due to recent advances in surgical and fixation techniques, the tendency is to reduce the talar fractures as anatomically as possible and stabilize them with screws.  

It is worthwhile considering the option of a talectomy in conjunction with a primary tibiocalcaneal arthrodesis. although cases of talus fractures with comminuted dislocations are rare. In this particular case study, to attempt to perform an open reduction and internal fixation procedure may have increased the potential risk and complications associated with these procedures, mainly AVN, traumatic hind foot arthrosis both potentially requiring further surgery. Ultimately, increasing the potential for a high rate of long-term complications and a significant impact on activities of daily living and quality of life after such treatment [30].

In summary, surgeons should be flexible in their approach in regards to consideration of treatment options in order to maximise patient outcomes.  This case highlights that the procedure choice of a primary talectomy and tibio-calcaneal arthrodesis is a viable treatment option for traumatic dislocated comminuted talar fractures, which intra-operatively was unable to be anatomically reduced and fixated.

Funding declaration: None  

Conflict of interest declaration: None

References

  1. Fortin PT and Balazsy JE.  Talus Fractures: Evaluation and Treatment. Journal of the American Academy of Orthopaedic Surgeons. 2001; 9(2):114-127. 
  2. Dale JD, Ha AS, Chew FS (2013). Update on Talar Fracture Patterns. A Large Level 1 Trauma Center Study. American Journal of Roentgenology. 201:1087-1092.
  3. Lamothe JM and Buckley RE. Talus fractures: a current concepts review of diagnoses, treatments, and outcomes. Acta Chir Orthop Traumatol Cech. 2012; 79(2):97-106.
  4. Ptaszek, A (1999) Immediate Tibiocalcaneal Arthrodesis with Interposition Fibular Autograph for Salvage After Talus Fracture: A Case Report. Journal of Orthopaedic Trauma. 13(8): 589-592.
  5. Pearce DH, Mongiardi CN, Fornasier VL, Daniels TR. Avascular necrosis of the Talus: A pictorial essay. RadioGraphics. 2005; 25(2):399-410. 
  6. Balaji GG and Arockiaraj J. Bilateral talus fracture dislocation: is avascular necrosis inevitable? BMJ Case Rep. Aug 25;2014. pii: bcr2014205367. doi: 10.1136/bcr-2014-205367
  7. Cutler L and Boot DA. Complex fractures, do we operate on enough to gain and maintain experience? Injury. 2003; 34(12):888-91.
  8. Melenevsky Y, Mackey RA, Abrahams RB, Thomson NB. Talar Fractures and Dislocations: A Radiologist’s Guide to Timely Diagnosis and Classification. Radiographics. 2015; 35(3):765-79.
  9. Weston JT, Liu X, Wandtke ME, Liu J, Ebraheim NE.  A Systematic Review of Total Dislocation of the Talus. Orthop Surg. 2015; 7(2):97-101. 
  10. Marsden CM (1955). Ankle fusion after complete talectomy in fracture dislocation of the talus. Journal of the Royal Army Medical Corps. 101(1):60-2.
  11. Vallier HA, Nork SE, Barei DP, Benirschke SK, Sangeorzan BJ. Talar neck fractures: results and outcomes. Journal of Bone & Joint Surgery. 86: 1616-1624.
  12. Alton T, Patton DJ, O.Gee A (2015) Classification in Brief: The Hawkins Classification for Talus Fractures. Clinical Orthopaedics and Related Research. 473(9): 3046-49.
  13. Hilandus F (1608): Report quoted in Opera, quae extant omnia (1946), Obs. 67, p. 140. Francofurti ad Moenum : Beyer.
  14. Whitman A , Astragalectomy – Ultimate Result.  Americal Journal of Surgery. 1931; 11(2):357–358.
  15. Gursu S, Bahar H, Camurcu Y, Yildirim T, Buyuk F, Ozcan C, et al.  Talectomy and Tibiocalcaneal Arthrodesis with Intramedullary Nail Fixation for Treatment of Equinus Deformity in Adults. Foot Ankle Int. 2015 Jan; 36(1):46-50. doi: 10.1177/1071100714550649
  16. Ruet A, Desroches A, Pansard E, Schnitzler A, Denormandie P.  Role of talectomy in management of severe equinovarus deformity in adults. Annals of Physical and Rehabilitation Medicine. 2014 May; 57:e197. doi: 10.1016/j.rehab.2014.03.719
  17. Joseph TN and Myerson MS. Use of talectomy in modern foot and ankle surgery  Foot Ankle. Clin N Am. 2004; 9:775–785.
  18. Daghino W, Di Gregorio G, Cerlon R. Surgical reconstruction of a crush injury of the talar body: a case report. J Bone Joint Surg Am. 2011 Jul; 93(14):e80.
  19. Stapleton JJ, Zgonis T. Concomitant Osteomyelitis and Avascular Necrosis of the Talus Treated with Talectomy and Tibiocalcaneal Arthrodesis. Clin Podiatr Med Surg. 2013 Apr; 30(2):251-6. doi: 10.1016/j.cpm.2013.01.001
  20. Kharwadkar N, Nand S, Walker AP. Primary talectomy for severe fracture-dislocation of the talus with a 15-year follow up: case report. Foot Ankle Int. 2007; 28(2):272-275.
  21. Gunal I, Atilla S, Araç S, Gürsoy Y, Karagözlu H. A new technique of talectomy for severe fracture-dislocation of the talus. J Bone Joint Surg Br. 1993 Jan; 75(1):69-71.
  22. Detenbeck LC and Kelly PJ. Total Dislocation of the Talus. J Bone Joint Surg Am. 1969 Mar; 51(2):283-288.
  23. Cinar M, Derincek A, Akpinar S. Tibiocalcaneal arthrodesis with posterior blade plate in diabetic neuroarthropathy. Foot Ankle Int. 2010; 31(6):511-516
  24. Clements JR. Use of allograft cellular bone matrix in multi-stage talectomy with tibiocalcaneal arthrodesis: a case report. J Foot Ankle Surg. 2012; 51(1):83-86.
  25. Mann RA, Chou LB. Tibiocalcaneal arthrodesis. Foot Ankle Int. 1995; 16(7):401–405.
  26. Reckling FW. Early tibiocalcaneal fusion in the treatment of severe injuries of the talus. J Trauma. 1972; 12(5):390–396.
  27. Dennison MG, Pool RD, Simonis RB, Singh BS. Tibiocalcaneal fusion for avascular necrosis of the talus. J Bone Joint Surg Br. 2001; 83(2):199–203.
  28. Thomas RH, Daniels TR. Primary fusion as salvage following talar neck fracture: a case report. Foot Ankle Int. 2003 Apr; 24(4):368-71. 
  29. Hantira H, Al Sayed H, Barghash I. Primary ankle fusion using Blair technique for severely comminuted fracture of the talus. Med Princ Pract. 2003 Jan-Mar; 12(1):47-50E
  30. Stake IK, Madesan JE, Hvaal K, Johnsen E. Surgically treated talar fractures. A retrospective study of 50 patients. Foot and Ankle Surg. 2016; 22:85-9.

Coronal plane talar body fracture associated with subtalar and talonavicular dislocations: A case report

by Barıs YILMAZ, MD1, Baver ACAR, MD2, Baran KOMUR, MD3, Omer Faruk EGERCI, MD2, Ozkan KOSE MD, FEBOT, Assoc. Prof.2pdflrg

The Foot and Ankle Online Journal 9 (4): 3

Talar body fractures usually occur as a result of high-energy trauma and variety of different type of talar fractures may occur. Most of the talar fractures are included in classification systems.  Even though it is possible to observe talar fractures with concomitant dislocations, together by reason of their functional relationship with the tibiotalar, subtalar and talonavicular joints, such observations are only addressed in literature in the form of case studies.  The present case, exhibiting talar body fracture in the coronal plane observed together with subtalar and talonavicular dislocations, is of importance due to the rarity of the diagnosis, treatment, and 2-year follow-up results.

Keywords: Talar body fracture, subtalar dislocation, talonavicular dislocation, talus

ISSN 1941-6806
doi: 10.3827/faoj.2016.0904.0003

1 – Fatih Sultan Mehmet Training and Research Hospital, Orthopedics and Traumatology Department, Istanbul, Turkey
2 – Antalya Training and Research Hospital, Orthopedics and Traumatology Department, Antalya, Turkey
3 – Kanuni Sultan Suleyman Training and Research Hospital, Orthopedics and Traumatology Department, Istanbul, Turkey
* – Corresponding author: drozkankose@hotmail.com


Talar fractures and fracture-dislocations are uncommon compared to other injuries to the ankle because of the location of the talus in the ankle joint and its anatomical structure. Talar fractures represent 0.32% of all fractures, 2% of lower-extremity fractures, and 5-7% of ankle fractures. However, the talus is the second most frequently fractured bone of all the tarsal bones[1, 2]. In the literature, the incidence of talar body fractures has been reported to be in the range of 7-38% of all talus fractures, and as 0.062% of all body fractures [3, 4].

The majority of these injuries occur as a result of high-energy trauma [5, 6]. The lack of muscle attached to the talus and that a large part of the surface is covered with articular cartilage create a predisposition to talus fractures and concurrently observed dislocations. The treatment of talar body fractures is rather problematic due to the complex anatomy and the diversity of fracture patterns [7, 8]. Treatment becomes even more difficult when these fractures are accompanied by dislocations of adjacent joints. The case presented in this paper emphasizes the importance of emergent open or closed reduction and stable fixation with lag screws and Kirschner wires.

The concurrency of talar body fractures specifically with dislocations of adjacent joints has been addressed with only a few case studies in literature. This case study presents a subtalar and talonavicular joint dislocation of a talar body fracture in the coronal plane and is of paramount significance in that it was treated with open reduction and internal fixation and the clinical follow-up results of 2 years are available.  

Case report

A 32-year-old male was brought to our Emergency Department after sustaining a motorcycle accident with complaints of intense pain and deformity of the right ankle. On physical examination, the ankle was seen to be in an inverted position and there was distinctive deformity accompanied by local paleness arising from skin tightness on the lateral side (Figure 1). The neurovascular examination results were normal. The patient had no accompanying additional injuries. Direct radiographs of the ankle revealed a talar body fracture accompanied by subtalar and talonavicular dislocations (Figure 2). Under conscious sedation, closed reduction was attempted twice in the Emergency Room with no success.  Computed Tomography (CT) was performed and demonstrated a coronal plane talar body fracture associated with subtalar and talonavicular dislocations. A distal fragment of the talus was dislocated, twisted and locked (Figure 3). Thereafter, open reduction and internal fixation of the fracture was planned.

fig1

Figure 1 Clinical image of the case in ED.

fig2

Figure 2 Pre-operative radiographic evaluation of the case.

fig3

Figure 3 Pre-operative CT scan.

Once the surgical preparations had been completed, the patient was taken to the operating room approximately 3 hours after the trauma. Under spinal anesthesia and tourniquet application, an anterolateral incision was used to expose the fracture. The talar head was observed to be locked in the form of a button and a hole in the anterior capsule.  The capsule was retrieved from the talar head and reduction was secured. The talus was fixed with two cannulated screws. The subtalar and talonavicular joints were seen to be unstable, and could be dislocated with a weak inversion strain. Therefore, both the subtalar and talonavicular joints were fixed with K-wires (Figure 4). The achievement of anatomic reduction of both the fracture and the subtalar and talonavicular reduction was monitored postoperatively through a CT scan.  The patient was discharged from the hospital with a short leg brace on the 2nd postoperative day.  The sutures were removed on the 20th day and the K-wires were removed and active ankle exercises were started in the 6th week of follow-up. Full weight bearing was started in the 8th week following the observation of complete healing of the fracture.

fig4

Figure 4 Post-operative radiographs.

The final clinical and radiological follow-up was performed in the second postoperative year (Figure 5). The patient had already returned to work and social life and his AOFAS score was 87 with no significant finding of arthrosis or any other complaint.

fig5

Figure 5 Post-operative CT examination of the case.

fig6

Figure 6 Radiographic evaluation of the case 2 years postoperatively.

Discussion

Fractures of the Talus typically involve the tibiotalar joint. In their simplest clinical forms, they can be classified as fractures of the talar head, talar neck, talar body, and talar process.  In the AO/OTA classification, however, talus fractures are defined as extra-articular fractures covering neck fractures and avulsion fractures, partial intra-articular fractures covering split or compression fractures, and intra-articular fractures divided into non-displaced, displaced and segmental fractures. The distinction between talar body and neck fractures is of great importance.  A relevant evaluation defined body fracture as a case with the fracture line lying proximal to the lateral process of the talus and neck fracture as a case with the fracture line lying distal to the lateral process of the talus [9, 10].

Talar body fractures have various classifications.  The generally utilized Sneppen classification divided these fractures into five main headings: Type I, osteochondral or transchondral; Type II, coronal, sagittal horizontal, non-segmental; Type III posterior tubercle; Type IV lateral process; and Type V, crush fractures [11]. The Fortin classification defines talar body fractures under three headings: Type 1, talar body fracture on any plane; Type 2, talar process or tubercle fracture; or Type 3 compression or impaction fracture of the talar body [12]. Apart from these headings, these fractures involving the talar dome can also be classified as sagittal, coronal, transverse or segmental fractures depending on the main fracture line. Certain types of fractures and fracture-dislocations not included in the aforementioned fracture classifications can at times be provided in the literature as case reports [13-18]. Identification and classification efforts are still ongoing for these fractures and accompanying dislocations [19]. However, there are some authors who argue that these means of classification do not contribute to the selection of suitable treatment or treatment results [2, 8, 12, 20]. The current case was defined as a talar body fracture on the coronal plane accompanied by subtalar and talonavicular dislocations outside the scope of these classifications. Therefore, these types of fracture-dislocations can be indicated as a rare injury where the fracture type has been classified in literature without any dislocation type specified.  

The mechanism of injury in talar body fractures is generally defined as the exposure of the talar region to axial load or shear forces between the tibia and calcaneus  [21]. This frequently occurs in motorcycle accidents, as in the current case, or incidents of individuals falling from height.  Moreover, these fractures may be accompanied by calcaneus, tibia and talar neck fractures since most of them are induced by high-energy injuries. The observation of dislocations and ligament injuries in various adjacent joints is not surprising with such a mechanism of injury. As an example, a case of medial total subtalar dislocation was reported without a fracture in the ankle [22]. Similarly, another case was defined as a talar body fracture accompanied by anterior talofibular ligament and peroneal longus tendon injuries [23]. Although the literature does not include a high number of series pertaining to dislocations observed together with talar body fractures, a series of 23 talus fractures provided the finding of 7 peritalar dislocations [24]. Adjacent joint fractures accompanying talar body fractures are addressed in the literature with only a few cases [13-18].

Talus fractures can be diagnosed through standard radiographies in general.  However, adjacent joint dislocations clearly add difficulty to the diagnosis of such fractures.  Hence, a good radiological evaluation from the beginning is of great value for prospective surgical planning.  At this stage, CT is of extreme importance to undertake a complete evaluation of the structure of the fracture and to guide the course of treatment.  At times, MRI might be required for the additional evaluation of soft tissue injuries in surrounding ligaments and tendons.

Early emergency reduction should be performed for all fracture-dislocations of the talus with a view to preventing soft tissue damage and not to disrupt the circulation in the talus.  Specifically displaced talar neck and body fractures should be treated with open reduction and stable internal fixation in the early stage.  Closed or percutaneous reduction may be attempted immediately after sufficient analgesia and relaxation.  However, repeated unsuccessful attempts at reduction may increase the damage in fracture-dislocations with already severe damage in soft tissues. However, open reduction is mandatory for locked dislocations, as in the present case or for dislocations with soft tissue in between which cannot be managed with close reduction. If a patient cannot be taken into open reduction for patient-related or other reasons such as in the case of polytrauma patients, the fracture should undergo initial reduction through minimally invasive methods to the extent possible and then be fixed with Kirschner wires [25]. As is the case in other open fractures, open talus fractures require surgical intervention [26]. Furthermore, if the foot is diagnosed with compartment syndrome, dorsomedial dermatofasciotomy should also be performed through upper and lower extensor retinacula.  This approach will also allow for open reduction and fixation.  Some cases may require medial malleolar osteotomy for anatomic reduction depending on the medial location and extension of the fracture. Patients with severe soft tissue damage and fracture-dislocations may have tibia-metatarsal external fixators applied and the necessary follow-up [25]. In the present case, it was decided to perform immediate open surgical reduction due to failure in the initial closed reduction and reduction was obtained by retrieving the talar head from the point where it was interlocked like a button and a buttonhole in the capsule by employing an anterolateral incision which could facilitate reduction. Open reduction approaches which have been suggested for anatomic reduction includes posteromedial, medial and anteromedial approaches.  Some authors have also reported the use of an anteromedial and anterolateral double incision [21]. These approaches provide various advantages. As an example, a posterolateral incision is known to disrupt the blood flow to a lesser extent, but makes it difficult to position the patient and offers a limited approach. Whereas a medial incision provides a more convenient approach specifically together with medial malleolar osteotomy, as there are known problems associated with osteotomy, in addition to the risks to the regional anatomic structures. Similarly, an anterolateral incision also has its own specific advantages and disadvantages. In general, the type of fracture and the experience level of the surgeon are considered to be more important for the approach to be selected [21]. Another important preference is the method of arthroscopic assisted internal fixation method, which has been defined in literature as a less invasive option specifically for the talar transchondral dome [21, 27].

Fixation with headless or bioabsorbable screws is recommended due to the anatomical structure of the talar bone and the articular nature of the major part of the surface.  In the current case, fracture fixation was secured with cannulated screws.  In cases where the fracture is accompanied by unstable joints and loss of reduction even after a small-scale strain, additional support may be provided to improve stability through the fixation of both subtalar and talonavicular joints with K-wires as in the current case. Consequently, talar body fractures involving distinct displacement pose a difficulty in treatment especially if they are accompanied by dislocation in an adjacent joint and long-term results are generally poor unless a good course of surgical treatment is followed.  Talectomy is not always practical because of problems such as pain on weight-bearing and instability, and should only be considered for adults. In this case, better results could be obtained when calcaneotibial fusion and talectomy are implemented concurrently [34].  Nevertheless, this should be included in the treatment as a final step.

Surgical complications pertaining to talus fractures notably include avascular necrosis [AVN], post-traumatic osteoarthritis, non-union, malunion, and infection. In a study of 26 cases of talar body fractures, poorest results were reported based on 1-year follow-up radiographs with AVN in 38%, with post-traumatic tibiotalar osteoarthritis in 65%, with post-traumatic subtalar osteoarthritis in 34%, and with segmental and severely displaced fractures [28]. Particularly after talar neck and body fractures, the AVN risk remains almost the same, while the risk of post-traumatic subtalar arthrosis is higher. Moreover, one study in literature reported the incidence of AVN for talar body fractures without dislocations to be 25% and the risk of AVN accompanying dislocation to be 50% [29]. Another meta-analysis indicated these rates as 10% without dislocation and 25% with dislocation [30]. The previously higher incidence of AVN has been reduced due to improved surgical approach methods that have been implemented in more recent literature [31, 32]. It has also been demonstrated that the waiting period for internal fixation does not create a significant effect in terms of the development of AVN in studies undertaken at various centres [32, 33]. Another study reported post-traumatic osteoarthritis at 50% in the ankle after compression fractures, at 41% after shear fractures and at 24% in the subtalar joint [11]. The incidence of osteoarthritis in talar body fractures is closely associated with the type of fracture and injury.  

Consequently, it is as difficult to diagnose talar body fractures as it is to apply treatment and to follow up the results of treatment. Even though extremely poor results have been reported for the treatment of such fractures in the past, much better results can be observed through accurate and meticulous surgical interventions in place today.  A study in literature reporting the results of talus fractures after a period of 30 months stated poorer AOFAS results for body fractures with an average score of 58 when compared to neck fractures with an average score of 79 and process fractures with an average score of 85.  The same study also noted the worse Maryland foot scores and Hawkins evaluation criteria for body fractures [ 2].  Another reference defined the average score in AOFAS as 68.4. [35]. The high value and successful AOFAS result obtained in the current case after a 2 year follow-up period can be considered to be due to the accurate interpretation of the fracture-dislocation,  anatomic reduction with early surgery, and good fixation.  However, there is still a need in literature for long-term results pertaining to such uncommon cases.

References

  1. Veerappa LA, Gopalkrishna C. Talar neck fracture with talar head dislocation and intact ankle and subtalar joints-a rare case report. Foot (Edinb) 2010;20:39-41. http://www.ncbi.nlm.nih.gov/pubmed/20434679
  2. Elgafy H, Ebraheim NA, Tile M, Stephen D, Kase J. Fractures of the talus: experience of two level 1 trauma centers. Foot Ankle Int 2000;21:1023-1029.http://www.ncbi.nlm.nih.gov/pubmed/11139032
  3. Daniels TR, Smith JW. Talar neck fractures. Foot Ankle 1993;14:225-234. http://www.ncbi.nlm.nih.gov/pubmed/8359770
  4. Early JS. Management of fractures of the talus: body and head regions. Foot Ankle Clin N Am 2004;9:709– 722. http://www.ncbi.nlm.nih.gov/pubmed/15498702
  5. Coltart WD. Aviator’s astragalus. J Bone Joint Surg [Br] 1952; 34:545-66. http://www.ncbi.nlm.nih.gov/pubmed/12999945
  6. Fournier ABarba NSteiger VLourdais AFrin JMWilliams TFalaise VPineau VSalle de Chou ENoailles TCarvalhana GRuhlmann FHuten D. Total talus fracture – long-term results of internal fixation of talus fractures. A multicentric study of 114 cases. Orthop Traumatol Surg Res. 2012;6;98 (4 Suppl):S48-55. http://www.ncbi.nlm.nih.gov/pubmed/22621831
  7. Szyszkowitz R, Reschauer R, Seggl W. Eighty-five talus fractures treated by OR‹F with five to eight years of follow-up study of 69 patients. Clin Orthop Relat Res. 1985;(199):97-107. http://www.ncbi.nlm.nih.gov/pubmed/4042502
  8. Inokuchi S, Ogawa K, Usami N, Hashimoto T. Long-term follow up of talus fractures. Orthopedics 1996;19:477-481. http://www.ncbi.nlm.nih.gov/pubmed/8727342
  9. Inokuchi S, Ogawa K, Usami N. Classification of Fractures of the Talus: Clear Differentiation Between Neck and Body Fractures Foot Ankle Int .1996;12;17 :748-750. http://www.ncbi.nlm.nih.gov/pubmed/8973897
  10. Sneppen O, Buhl O. Fracture of the talus. A study of its genesis and morphology based upon cases with associated ankle fracture. Acta Orthop Scand 1974;45:307-320. http://www.ncbi.nlm.nih.gov/pubmed/4209770
  11. Sneppen O, Christensen SB, Krogsoe O, Lorentzen J. Fracture of the body of the talus. Acta Orthop Scand. 1977;48(3):317-24. http://www.ncbi.nlm.nih.gov/pubmed/920125
  12. Fortin PT, Balazsy JE. Talus fractures: evaluation and treatment. J Am Acad Orthop Surg 2001;9:114–127. http://www.ncbi.nlm.nih.gov/pubmed/11281635
  13. Hafez MA, Bawarish MA, Guvvala R. Closed talar body fracture with talonavicular dislocation; a case report. Foot Ankle Int. 2000;7;21:599-601. http://www.ncbi.nlm.nih.gov/pubmed/10919629
  14. Clement ND, Phillips SA, Biant LC. The Edinburgh variant of a talar body fracture: a case report. J Orthop Surg Res. 2010;12;9;5:92. http://www.ncbi.nlm.nih.gov/pubmed/21143899
  15. Galanopoulos IFogg QAshwood N. Posterior talus fracture with dislocation of both talo-navicular and subtalar joints: a variant type II of the Sneppens classification. BMJ Case Rep. 2012 Jul 27;2012. pii: bcr2012006457. http://www.ncbi.nlm.nih.gov/pubmed/22847568
  16. Haverkort JJLeenen LPWessem KJ. Diagnosis and treatment of talar dislocation fractures illustrated by 3 case reports and review of literature. Int J Surg Case Rep. 2015;16:106-111. http://www.ncbi.nlm.nih.gov/pubmed/26451643
  17. Guler FOzyurek STuran AKose O. A large bone fragment posterior to talus following medial subtalar dislocation. BMJ Case Rep. 2013 Apr 9;2013. pii: bcr2013009262. http://www.ncbi.nlm.nih.gov/pubmed/23576666
  18. Mechchat A, Bensaad S, Shimi M, Elibrahimi A, Elmrini A. Unusual ankle fracture: A case report and literature review. J Clin Orthop Trauma. 2014 Jun;5 (2):103-106. http://www.ncbi.nlm.nih.gov/pubmed/25983480
  19. Melenevsky YMackey RAAbrahams RBThomson NB 3rd. Talus fractures and Dislocations: A Radiologist’s Guide to Timely Diagnosis and Classification. Radiographics. 2015 May-Jun;35 (3):765-779. http://www.ncbi.nlm.nih.gov/pubmed/25969933
  20. Vallier H, Nork S, Benirschke S, Sangeorzan B. Surgical treatment of talar body fractures. J Bone Joint Surg Am 2003;85-A (9):1716– 1724. http://www.ncbi.nlm.nih.gov/pubmed/12954830
  21. Smith NP, Ziran B. Fractures of talus. Operative Techniques in Orthopaedics, Vol 9, No 3 , 1999;7 : 229-238. http://dx.doi.org/10.1016/S1048-6666(99)80021-4
  22. Azarkane M, Boussakri H, Alayyoubi A, Bachiri M, Elibrahimi A, Elmrini A. Closed medial total subtalar joint dislocation without ankle fracture: a case report. J Med Case Rep. 2014 Sep 20;8:313.7 http://www.ncbi.nlm.nih.gov/pubmed/25240955
  23. Wang KCTu YKFang CMLiu HTUeng SW. Talar body fracture combined with traumatic rupture of anterior talofibular ligament and peroneal longus tendon.                                                Chang Gung Med J. 2004;1;27 :56-60. http://www.ncbi.nlm.nih.gov/pubmed/15074891
  24. Sakaki MH, Saito GH, de Oliveira RG, et al. Epidemiological study on talus fractures. Rev Bras Ortop. 2014;8 5;49 (4):334-339. http://www.ncbi.nlm.nih.gov/pubmed/26229823
  25. Rammelt S, Zwipp H. Talar neck and body fractures. Injury 2009;40:120-135. http://www.ncbi.nlm.nih.gov/pubmed/18439608
  26. Nyska M, Howard CB, Matan Y, et al. Fracture of the posterior body of the talus- the hidden fracture. Arch Orthop Trauma Surg 1998;117:114-117. http://www.ncbi.nlm.nih.gov/pubmed/9457355
  27. Subairy ASubramanian KGeary NP.Arthroscopically assisted internal fixation of a talus body fracture. Injury. 2004;1;35 :86-89. http://www.ncbi.nlm.nih.gov/pubmed/14728962
  28. Vallier HA, Nork SE, Benirschke SK, Sangeorzan BJ. Surgical treatment of talar body fractures. J Bone Joint Surg [Am] 2003;85:1716-1724. http://www.ncbi.nlm.nih.gov/pubmed/12954830
  29. Adelaar RS. The treatment of complex fractures of the talus. Orthop. Clin. North Am 1989;4; 20 :691-707. http://www.ncbi.nlm.nih.gov/pubmed/2797758
  30. Kuner, E.H., Lindenmaier, H.L., and Munst, P.: Talus fractures. In Tscherne, H., and Schatzker, J. (eds.), Major Fractures of the Pilon, the Talus, and the Calcaneus: Current Concepts of Treatment. Berlin, Springer-Verlag, 1993: 71-85.
  31. Frawley PA, Hart JA, Young DA. Treatment outcome of major fractures of the talus. Foot Ankle Int 1995;16:339-345. http://www.ncbi.nlm.nih.gov/pubmed/7550941
  32. Schulze W, Richter J, Russe O, Ingelfinger P, Muhr G. Surgical treatment of talus fractures: a retrospective study of 80 cases followed for 1-15 years. Acta Orthop Scand 2002;73:344-351. http://www.ncbi.nlm.nih.gov/pubmed/12143985
  33. Lindvall E, Haidukewych G, DiPasquale T, Herscovici D Jr, Sanders R. Open reduction and stable fixation of isolated, displaced talar neck and body fractures. J Bone Joint Surg [Am] 2004;86: 2229-2234. http://www.ncbi.nlm.nih.gov/pubmed/15466732
  34. Adelaar RS. Complex fractures of the talus. Instr Course Lect 1997;46:323-338. http://www.ncbi.nlm.nih.gov/pubmed/9143977
  35. Ebraheim NAPatil VOwens CKandimalla Y. Clinical outcome of fractures of the talar body. Int Orthop. 2008 ;12;32 :773-777. http://www.ncbi.nlm.nih.gov/pubmed/17583811